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a b s t r a c t 

Test case prioritization schedules test cases for execution in an order that attempts to accelerate the de- 

tection of faults. The order of test cases is determined by prioritization objectives such as covering code 

or critical components as rapidly as possible. The importance of this technique has been recognized in 

the context of Highly-Configurable Systems (HCSs), where the potentially huge number of configurations 

makes testing extremely challenging. However, current approaches for test case prioritization in HCSs 

suffer from two main limitations. First, the prioritization is usually driven by a single objective which 

neglects the potential benefits of combining multiple criteria to guide the detection of faults. Second, 

instead of using industry-strength case studies, evaluations are conducted using synthetic data, which 

provides no information about the effectiveness of different prioritization objectives. In this paper, we 

address both limitations by studying 63 combinations of up to three prioritization objectives in acceler- 

ating the detection of faults in the Drupal framework. Results show that non–functional properties such 

as the number of changes in the features are more effective than functional metrics extracted from the 

configuration model. Results also suggest that multi-objective prioritization typically results in faster fault 

detection than mono-objective prioritization. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Highly-Configurable Systems (HCSs) provide a common core

unctionality and a set of optional features to tailor variants of

he system according to a given set of requirements ( Cohen et al.,

008; von Rhein et al., 2015 ). For instance, operating systems

uch as Linux or eCos are examples of HCSs where functionality

s added or removed by installing and uninstalling packages,

.g. Debian Wheezy offers more than 37,0 0 0 available packages

 Debian, 2013 ). Content management systems are also examples of

CSs were configuration is managed in terms of modules, e.g. the

-commerce platform Prestashop has more than 3500 modules and

isual templates ( Segura et al., 2014 ). Recently, cloud applications

re also being presented as configurable systems, e.g. the Amazon

lastic Compute Cloud (EC2) service offers 1758 different possible

onfigurations ( García-Galán et al., 2013 ). 
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HCSs are usually represented in terms of features. A feature

epicts a choice to include a certain functionality in a system

onfiguration ( von Rhein et al., 2015 ). It is common that not all

ombinations of features are allowed or meaningful. In this case,

dditional constraints are defined between them, normally using

 variability model, such as a feature model. A feature model

epresents all the possible configurations of the HCS in terms

f features and constraints among them ( Kang et al., 1990 ). A

onfiguration is a valid composition of features satisfying all the

onstraints. Fig. 1 depicts a feature model representing a simplified

amily of mobile phones. The model illustrates how features and

elationships among them are used to specify the commonali-

ies and variabilities of the mobile phones. The following set of

eatures represents a valid configuration of the model: {Mobile

hone, Calls, Screen, HD, GPS, Media, Camera}. 

HCS testing is about deriving a set of configurations and testing

ach configuration ( Perrouin et al., 2011 ). In this context, a test

ase is defined as a configuration of the HCS under test (i.e. a set

f features) and a test suite is a set of test cases ( Perrouin et al.,

011 ). Henceforth, the terms test case and configuration are used

ndistinctly. Testing HCSs is extremely challenging due to the po-

entially huge number of configurations under test. As an example,

http://dx.doi.org/10.1016/j.jss.2016.09.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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Fig. 1. Mobile phone feature model. 
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Eclipse ( Debian, 2013 ) has more than 1650 plugins that can be

combined (with restrictions) to form millions of different config-

urations of the development environment. This makes exhaustive

testing of HCSs infeasible, that is, testing every single configuration

is too expensive in general. Also, even when a manageable set of

configurations is available, testing is irremediably limited by time

and budget constraints which requires making tough decisions

with the goal of finding as many faults as possible. 

Typical approaches for HCS testing use a model-based ap-

proach, that is, they take an input feature model representing

the HCS and return a valid set of feature configurations to be

tested, i.e. a test suite. In particular, two main strategies have

been adopted: test case selection and test case prioritization. Test

case selection reduces the test space by selecting an effective and

manageable subset of configurations to be tested ( Devroey et al.,

2014b; Henard et al., 2013; Marijan et al., 2013 ). Test case prioriti-

zation schedules test cases for execution in an order that attempts

to increase their effectiveness at meeting some performance goal,

typically detecting faults as soon as possible ( Al-Hajjaji et al., 2014;

Lopez-Herrejon et al., 2014; Wang et al., 2014b ). Both strategies

are complementary and are often combined. 

Test case prioritization in HCSs can be driven by different

functional and non–functional objectives. Functional prioritization

objectives are those based on the functional features of the sys-

tem and their interactions. Some examples are those based on

combinatorial interaction testing ( Wang et al., 2014b ), configu-

ration dissimilarity ( Al-Hajjaji et al., 2014; Henard et al., 2014;

Sánchez et al., 2014 ) or feature model complexity metrics ( Sánchez

et al., 2015b; Sánchez et al., 2014 ). Non–functional prioritization

objectives consider extra–functional information such as user

preferences ( Ensan et al., 2011; Johansen et al., 2012 ), cost ( Wang

et al., 2014b ), memory consumption ( Lopez-Herrejon et al., 2014 )

or execution probability ( Devroey et al., 2014a ) to find the best or-

dering for test cases. In a previous work ( Sánchez et al., 2015b ), we

performed a preliminary evaluation comparing the effectiveness

of several functional and non–functional prioritization objectives

in accelerating the detection of faults in an HCS. Results suggested

that non–functional properties such as the number of changes or

the number of defects in a previous version of the system were

among the most effective prioritization criteria. 

Challenges . Current approaches for test case prioritization in

HCSs follow a single objective approach ( Al-Hajjaji et al., 2014;

Johansen et al., 2012; Devroey et al., 2014a; Ensan et al., 2011;

Henard et al., 2014; Lopez-Herrejon et al., 2014; Sánchez et al.,

2015b ), that is, they either aim to maximize or minimize an objec-

tive (e.g. feature coverage) or another (e.g. suite size) but not both

at the same time. Other works ( Wang et al., 2013; 2014b ) combine
everal objectives into a single function by assigning them weights

roportional to their relative importance. While this may be ac-

eptable in certain scenarios, it may be unrealistic in others where

sers may wish to study the trade-offs among several objectives

 Lopez-Herrejon et al., 2014 ). Thus, the potential benefits of op-

imizing multiple prioritization objectives simultaneously, both

unctional and non–functional, is a topic that remains unexplored. 

A further challenge is related to the lack of HCSs with available

ode, variability models and fault reports that can be used to

ssess the effectiveness of testing approaches. As a result, authors

ypically evaluate their contributions in terms of performance (e.g.

xecution time) using synthetic feature models and data ( Al-Hajjaji

t al., 2014; Henard et al., 2013; Qu et al., 2008; Xu et al., 2013 ).

his introduces significant threats to validity, limit the scope of

heir conclusions and, more importantly, it raises questions regard-

ng the fault–detection effectiveness of the different algorithms

nd prioritization objectives. 

Contributions . In this paper, we present a case study on multi–

bjective test case prioritization in HCSs. In particular, we model

est case prioritization in HCSs as a multi–objective optimiza-

ion problem, and we present a search–based algorithm to solve it

ased on the classical NSGA-II evolutionary algorithm. Additionally,

e present seven objective functions based on both functional and

on–functional properties of the HCS under test. Then, we report a

omparison of 63 different combinations of up to three objectives

n accelerating the detection of faults in the Drupal framework.

rupal is a highly modular open source web content management

ystem for which we have mined a feature model and extracted

eal data from its issue tracking system and Git repository ( Sánchez

t al., 2015b ). Results reveal that non–functional properties, such

s the number of defects in previous versions of the system,

ccelerate the detection of faults more effectively than functional

roperties extracted from the feature model. Results also suggest

hat multi-objective prioritization is more effective at accelerating

he detection of faults than mono-objective prioritization. 

The rest of the paper is structured as follows: Section 2 in-

roduces the concepts of feature models and multi-objective

volutionary algorithms. Section 3 presents the Drupal case study

sed to perform this work. In Section 4 and Section 5 we respec-

ively describe the overview and definition of our approach and

he multi-objective optimization algorithm proposed. Section 6 de-

nes seven objective functions for HCSs based on functional and

on-functional goals. The evaluation of our approach is described

n Section 7 . Section 8 presents the threats to validity of our work.

he related work is discussed in Section 9 . Finally, we summarize

ur conclusions and outline our future work in Section 10 . 

. Background 

.1. Feature models 

A feature model defines all the possible configurations of a

ystem or family of related systems ( Benavides et al., 2010; Kang

t al., 1990 ). A feature model is visually represented as a tree–like

tructure in which nodes represent features, and edges denote

he relationships among them. A feature can be defined as any

ncrement in the functionality of the system ( Batory, 2005 ). A con-

guration of the system is composed of a set of features satisfying

ll the constraints of the model. Fig. 1 shows a feature model

escribing a simplified family of mobile phones. The hierarchical

elationship among features can be divided into: 

• Mandatory . If a feature has a mandatory relationship with its

parent feature, it must be included in all the configurations in

which its parent feature appears. In Fig. 1 , all mobile phones

must provide support for Calls . 
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Table 1 

Mobile phone feature attributes. 

Feature Changes Faults Size 

Basic 1 0 270 

Calls 6 10 1 ,0 0 0 

Camera 11 8 680 

GPS 8 6 460 

HD 3 3 510 

Media 9 5 1 ,100 

MP3 11 8 390 

Screen 2 4 930 
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Fig. 2. Working scheme of evolutionary algorithm. 
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• Optional . If a feature has an optional relationship with its

parent feature, it can be optionally included in all the con-

figurations including its parent feature. For example, GPS is

defined as an optional feature of mobile phones. 
• Alternative . A set of child features has an alternative relation-

ship with their parent feature when only one of them can be

selected when its parent feature is part of the configuration.

In Fig. 1 , mobile phones can provide support for Basic or HD
(High Definition) screen, but not both of them at the same time.

• Or . A set of child features has an or-relationship with their

parent when one or more of them can be included in the

configurations in which its parent feature appears. In Fig. 1 ,

software for mobile phones can provide support for Camera ,
MP3 or both in the same configuration. 

In addition to the hierarchical relationships between features,

 feature model can also contain cross-tree constraints. These are

sually of the form: 

• Requires . If a feature A requires a feature B, the inclusion of A in

a configuration implies the inclusion of B in such configuration.

In Fig. 1 , mobile phones including the feature Camera must

include support for a HD screen. 
• Excludes . If a feature A excludes a feature B, both features

cannot appear in the same configuration. 

The following is a sample configuration derived from the

eature model in Fig. 1 : { Mobile Phone , Calls , Screen , HD ,
edia , Camera }. This configuration includes all the mandatory

eatures ( Mobile Phone , Calls , Screen ) and some extra

eatures ( HD , Media , Camera ) meeting all the constraints of

he model, e.g. Camera requires HD . Feature models can be au-

omatically analysed to extract all its possible configurations or

o determine whether a given configuration is valid (it fulfils all

he constraints of the model), among other analysis operations

 Benavides et al., 2010 ). Some tool supporting the analysis of

eature models are FaMa , SPLAR ( Mendonca et al., 2009 ) and

eatureIDE ( Thüm et al., 2014 ). 

Feature models can be extended with additional information by

eans of feature attributes, these are called attributed or extended

eature models ( Benavides et al., 2010 ). Feature attributes are often

efined as tuples < name, value > specifying non–functional

nformation of features such as cost or memory consumption.

s an example, Table 1 depicts three different f eature attributes

number of changes, number of faults and lines of code) and their

alues on the features of the model in Fig. 1 . 

Feature models are often used to represent the test space of an

CS where each configuration of the model represents a potential

est case. Since typical HCSs can have thousands or even millions

f different configurations, several sampling techniques have been

roposed to reduce the number of configurations to be tested

e.g. Lopez-Herrejon et al., 2015; Marijan et al., 2013; Perrouin

t al., 2010 ). Salient among them is pairwise testing whose goal

s to select test suites that contain all possible combinations of

airs of features ( Lopez-Herrejon et al., 2015 ). As an example,
able 3 shows the set of configurations obtained when applying

airwise testing to the model in Fig. 1 . The test suite is reduced

rom 13 (total number of configurations of the feature model) to

ve in the pairwise suite. Once a set of configurations are selected

or testing, their behaviour has to be tested using standard testing

echanisms, e.g. executable unit tests. However, in this article we

ocus only on the first step: obtaining a set of high-level test cases

espect to different testing objectives. In Section 4 we present in

urther detail the role of feature models in our work. 

.2. Multi–objective evolutionary algorithms 

Evolutionary algorithms are a widely used strategy to solve

ulti–objective optimization problems. These algorithms manage

 set of candidate solutions to an optimization problem that are

ombined and modified iteratively to obtain better solutions. This

rocess simulates the natural selection of the better adapted indi-

iduals that survive and generate offspring improving species. In

volutionary algorithms each solution is referred to as individual

r chromosome , and objectives are referred to as fitness functions . 

The working scheme of an evolutionary algorithm is depicted in

ig. 2 . Initialization generates the set of individuals that the algo-

ithm will use as starting point. Such initial population is usually

enerated randomly. Next, the fitness functions are used to assess

he individuals. In order to create offspring, individuals need to

e encoded, expressing its characteristics in a form that facilitates

ts manipulation during the rest of the algorithm. Then, the main

oop of the evolutionary algorithm is executed until meeting a

ermination criterion as follows. First, individuals are selected from

urrent population in order to create new offspring. In this process,

etter individuals usually have higher probability of being selected

esembling the natural evolution where stronger individuals have

ore chances of reproduction. Next, crossover is performed to

ombine the characteristics of a pair of the chosen individuals to
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produce new ones in an analogous way to biological reproduction.

Crossover mechanisms depend strongly on the scheme used for

the encoding. Mutation generates random changes on the new

individuals. Changes are performed with certain probability where

small modifications are more likely than larger ones. In order to

evaluate the fitness of new and modified individuals, decoding is

performed and fitness functions are evaluated. Finally, the next

population is conformed in such a way that individuals with better

fitness values are more likely to remain in the next population. 

Multi–Objective Evolutionary Algorithms (MOEAs) are a specific

type of evolutionary algorithm where more than one objective

are optimized simultaneously. However, except in trivial systems,

there rarely exist a single solution that simultaneously optimizes

all the objectives. In that case, the objectives are said to be con-

flicting, and there exists a (possibly infinite) number of so-called

Pareto optimal solutions. A solution is said to be a Pareto optimal

(a.k.a. non-dominated ) if none of the objectives can be improved

without degrading some of the others objectives. Analogously, the

solutions where all the objectives can be improved are referred to

as dominated solutions . The surface obtained from connecting all

the Pareto optimal solutions is the so-called Pareto Front . Among

the many MOEAs proposed in the literature, the Non-dominated

Sorting Genetic Algorithm-II (NSGA-II) ( Deb et al., 2002 ) has

become very popular due to its effectiveness in many of the

benchmarks in multi–objective optimization ( Deb and Deb, 2014;

Zhou et al., 2011 ). 

3. The drupal case study 

In this section, we present the Drupal case study fully re-

ported by the authors in a previous work ( Sánchez et al., 2015b ).

Drupal is a highly modular open source web content manage-

ment framework written in PHP ( Buytaert, 2015; Tomlinson and

VanDyk, 2010 ). This tool can be used to build a variety of websites

including internet portals, e-commerce applications and online

newspapers ( Tomlinson and VanDyk, 2010 ). Drupal has more than

30,0 0 0 modules that can be composed to form valid configura-

tions of the system. The size of the Drupal community (more

than 630,0 0 0 users and developers) together with its extensive

documentation are strengths to choose this framework as our em-

pirical case study. More importantly, the Drupal Git repository and

the Drupal issue tracking systems are publicly available sources

of valuable functional and non-functional information about the

framework and its modules. 

Fig. 3 depicts the feature model of Drupal v7.23. Nodes in the

tree represent features where a feature corresponds to a Drupal

module. A module is a collection of functions that provides certain

functionality to the system. Some modules extend the functionality

of other modules and are modelled as subfeatures, e.g. Views UI
extends the functionality of Views . The feature model includes

the core modules of Drupal, modelled as mandatory features,

plus some optional modules, modelled as optional features. In

addition, the cross-tree constraints of the features in the model

are depicted in Fig. 3 . These are of the form X requires Y , which

means that configurations including the feature X must also

include the feature Y . A Drupal configuration is a combination of

features consistent with the hierarchical and cross-tree constraints

of the model. In total, the Drupal feature model has 48 features,

21 non-redundant cross-tree constraints and it represents 2.09 E 9

different configurations ( Sánchez et al., 2015b ). 

In this paper, we model the non-functional data from Drupal as

feature attributes, depicted in Table 2 . These data were obtained

from the Drupal website, the Drupal Git repository and the Drupal

issue tracking system ( Sánchez et al., 2015b ). In particular, we use

the following attributes: 
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Table 2 

Non–functional feature attributes in Drupal. 

Feature Size Changes Faults (v7.22) Faults (v7.23) 

Single Integration Single Integration 

Backup migrate 11,639 90 80 4 80 4 

Blog 551 0 1 3 0 3 

Captcha 3115 15 17 1 17 1 

CKEditor 13,483 40 197 11 197 9 

Comment 5627 1 10 19 13 15 

Ctools 17,572 32 181 31 181 31 

Ctools acc. rul. 317 0 0 0 0 0 

Ctools cus. con. 284 1 10 1 10 1 

Date 2696 9 44 3 44 3 

Date API 6312 11 41 1 41 1 

Date popup 792 4 30 1 30 1 

Date views 2383 6 25 1 25 1 

Entity API 13,088 14 175 18 175 18 

Entity tokens 327 1 22 6 22 6 

Features 8483 72 97 9 97 9 

Field 8618 7 45 18 48 17 

Field SQL sto. 1292 2 3 2 3 2 

Field UI 2996 3 13 2 11 1 

File 1894 1 10 5 11 5 

Filter 4497 3 19 5 19 5 

Forum 2849 2 6 4 5 4 

Google ana. 2274 14 11 1 11 1 

Image 5027 3 10 8 9 6 

Image captcha 998 0 3 0 3 0 

IMCE 3940 9 9 5 9 5 

Jquery update 50,762 1 64 12 64 12 

Libraries API 1627 7 11 0 11 0 

Link 1934 11 82 4 82 4 

Node 9945 4 26 29 24 23 

Options 898 1 0 0 0 0 

Panel nodes 480 2 16 1 16 1 

Panels 13,390 34 87 24 87 24 

Panels IPE 1462 20 19 2 19 2 

Path 1026 20 3 1 2 1 

Pathauto 3429 2 54 9 54 9 

Rules 13,830 5 240 15 240 15 

Rules sch. 1271 4 13 0 13 0 

Rules UI 3306 1 26 0 26 0 

System 20,827 16 35 5 35 4 

Taxonomy 5757 4 15 22 19 22 

Text 1097 1 6 3 5 3 

Token 4580 10 37 7 37 7 

User 8419 12 20 25 19 22 

Views 54,270 27 1091 51 1091 51 

Views content 2683 5 23 2 23 2 

Views UI 782 0 12 4 12 4 

WebForm 13,196 46 292 0 292 0 

Total 336,025 573 3,231 3,232 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Feature size . Number of Lines of Code (LoC) of the source

code associated to the feature (blank lines and test files were

excluded from the counting). The sizes range from 284 LoC

(feature Ctools custom content ) to 54,270 LoC (feature

Views ). 
• Number of changes . Number of commits made by the contribu-

tors to the feature in the Drupal Git repository 1 during a period

of two years, from 1 May 2012 to 31 April 2014. As illustrated,

the number of changes ranges from 0 (feature Blog ) to 90

(feature Backup migrate ). 
• Single faults . Number of faults reported in the Drupal issue

tracking system 

2 . Faults were collected for two consecutive ver-

sions of the framework v7.22 and v7.23 in a period of two years,

from 1 May 2012 to 31 April 2014. For instance, we found 19

reported bugs related to the Drupal module Taxonomy (feature
1 http://drupalcode.org/project/drupal.git . 
2 https://drupal.org/project/issues . 

4

 

a

Taxonomy ) in Drupal v7.23. The number of total faults ranges

from 0 in features as Options to 1091 in the feature Views . 
• Integration faults . List of features for which integration faults

have been reported in the Drupal issue tracking system. In total,

we identified three faults triggered by the interaction of four

features, 25 caused by the interaction of three features and 132

faults triggered by the interaction between two features. These

faults have been computed on the features that triggered them

in Table 2 . For instance, the fault caused by the interaction of

Blog and Entity API is computed as one integration fault

in the feature Blog and one integration fault in the feature

Entity API . We refer the reader to Sánchez et al. (2015b ) for

detailed information about the bug mining process in Drupal. 

. Approach overview 

In this section, we define the problem addressed and our

pproach illustrating it with an example. 

http://drupalcode.org/project/drupal.git
https://drupal.org/project/issues
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Table 3 

Mobile phone test suite. 

ID Test case 

TC1 Mobile Phone, Calls, Screen, Basic, Media, MP3 

TC2 Mobile Phone, Calls, Screen, HD, GPS, Media, Camera, MP3 

TC3 Mobile Phone, Calls, Screen, HD, Media, Camera 

TC4 Mobile Phone, Calls, Screen, HD 

TC5 Mobile Phone, Calls, Screen, Basic, GPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Our multi–objective test case prioritization approach for HCSs. 

Table 4 

A set of test suites for the mobile phone. 

ID Test cases Changes Faults 

TS1 TC4, TC1, TC5, TC3 109 49 

TS2 TC1, TC2, TC3, TC4, TC5 80 52 

TS3 TC3, TC4, TC5, TC2, TC1 77 57 

TS4 TC5, TC4, TC2, TC3, TC1 59 53 
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4.1. Problem 

The classical problem of test case prioritization consists in

scheduling test cases for execution in an order that attempts to

increase their effectiveness at meeting some performance goal

( Rothermel et al., 2001 ). A typical goal is to increase the so-called

rate of fault detection, a measure of how quickly faults are detected

during testing. In order to meet a goal, prioritization can be driven

by one or more objectives. For instance, in order to accelerate the

detection of faults, a sample objective could be to increase the

code coverage in the system under test at a faster rate, under the

assumption that faster code coverage implies faster fault detection.

Inspired by the previous definition, we next define the multi-

objective test case prioritization problem in HCSs. Given the set of

configurations of an HCS represented by a feature model fm , we

present the following definitions. 

Test case . A test case is a set of features of fm , i.e., a config-

uration. A test case is valid if its features satisfy the constraints

represented by the feature model. As an example the following set

of features represent a valid test case of the model presented in

Fig. 1 : {Mobile Phone, Calls, Screen, Basic, Media,
MP3} . 

Test suite . A test suite is an ordered set of test cases. Table 3

depicts a sample test suite of the model presented in Fig. 1 . 

Objective function . An objective function represents a goal to

optimize. In this work, objective functions receive an attributed

feature model ( fm ) and a test suite as inputs and return a numer-

ical value measuring the quality of the suite with respect to the

optimization goal. 

Given a feature model representing the HCS under test and an

objective function, the problem of test case prioritization in HCSs

consists in generating a test suite that optimizes the target objec-

tive. This problem can be generalized to a multi–objective problem

by considering more than one objective. In this case, the problem

may have more than one solution (i.e., test suites) if there not exist

a single solution that simultaneously optimizes all the objectives. 

4.2. Our approach 

Our approach can be divided in two parts described in the next

sections. 

4.2.1. Multi–objective test case prioritization 

We propose to model the multi–objective test case prioritiza-

tion problem in HCSs as a multi–objective optimization problem.

Fig. 4 illustrates our approach. Given an input attributed feature

model, the problem consists in finding a set of solutions (i.e.,

test suites) that optimize the target objectives. In this paper, we

propose seven objective functions based on both functional and

non–functional properties of the HCS under test. 

4.2.2. Comparison of prioritization objectives 

We propose to compare the effectiveness of different combi-

nations of prioritization objectives at accelerating the detection of

faults in the Drupal framework. To that purpose, we used historical

data collected from a previous version of Drupal as detailed in
ection 3 . In particular, we propose using the Average Percentage of

aults Detected (APFD) ( Elbaum et al., 2004; Rothermel et al., 2001;

rikanth et al., 2009 ) metric to check which one of the Pareto opti-

al solutions obtained accelerates the detection of faults more ef-

ectively. This enables the selection of a global solution and makes

t possible to identify the objectives that lead to better test suites. 

The Average Percentage of Faults Detected (APFD) ( Elbaum et al.,

004; Rothermel et al., 2001; Srikanth et al., 2009 ) metric mea-

ures the weighted average of the percentage of faults detected

uring the execution of the test suite. To formally define APFD, let

 be a test suite which contains n test cases, and let F be a set of

 faults revealed by T . Let TFi be the position of the first test case

n ordering T’ of T which reveals the fault i . The APFD metric for

he test suite T’ is given by the following equation: 

P F D = 1 − T F 1 + T F 2 + . . . + T F n 

n × m 

+ 

1 

2 n 

APFD value ranges from 0 to 1. The closer the value is to 1,

he better is the fault detection rate, i.e., the faster is the suite at

etecting faults. 

.3. Illustrative example 

Table 4 shows the information of four test suites, using the

est cases of Table 3 . Note that the order of test cases matters.

long with the test cases that compose each suite, the table also

hows the value of the objective functions Changes and Faults
efined in Section 6 . Roughly speaking, these functions measures

he ability of the suite to test those features with a greater number

f code changes or reported bugs as quickly as possible. 

Fig. 5 depicts the Pareto front obtained when trying to find

 test suite that maximizes both objectives. As denoted in the

all-out of Fig. 5 , TS4 is dominated by TS3, since TS3 detects more

aults and covers more changes faster; i.e. TS3 is better than TS4

ccording to both objectives. Once the optimal test suites are

enerated, we calculate their APFD to evaluate how quickly they

etect faults (based on historical data from a previous version of

he system). Consider the faults detected by each test case shown

n Table 5 . According to the previous APFD equation, test suite TS1

roduces an APFD of 46%: 

 − 2 + 2 + 4 + 4 + 1 + 3 

4 × 6 

+ 

1 

2 × 4 

= 0 . 46 , 

S2 an APFD of 57%: 

 − 1 + 1 + 2 + 3 + 4 + 5 

5 × 6 

+ 

1 

2 × 5 

= 0 . 57 
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Fig. 5. Test suites of Table 4 as a pareto front for objectives Changes and Faults 
(both to be maximized). 

Table 5 

Test suite and faults exposed. 

Tests/Faults F1 F2 F3 F4 F5 F6 

TC1 X X 

TC2 X X 

TC3 X X X X 

TC4 X 

TC5 X 
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Fig. 6. Test suite encoding as a binary vector. 
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S3 an APFD of 80%: 

 − 1 + 1 + 1 + 1 + 2 + 3 

5 × 6 

+ 

1 

2 × 5 

= 0 . 8 

nd TS4 an APFD of 53%: 

 − 3 + 4 + 3 + 4 + 2 + 1 

5 × 6 

+ 

1 

2 × 5 

= 0 . 53 

Based on the previous results, TS3 is better than TS1 and TS2

nd therefore it is the best solution at accelerating the detection

f faults. The process could then be repeated with different groups

f objectives comparing their effectiveness in terms of the APFD

alues achieved. 

. Multi-objective optimization algorithm 

We used a MOEA to solve the multi–objective test case prior-

tization problem in HCSs. In particular, we adapted NSGA-II due

o its popularity and good performance for many multi-objective

ptimization problems. In short, the algorithm receives an at-

ributed feature model as input and returns a set of prioritized

est suites optimizing the target objectives. In the following, we

escribe the specific adaptations performed to NSGA-II to solve

he multi–objective test case prioritization problem for HCSs. 

.1. Solution encoding 

In order to create offspring, individuals need to be encoded

xpressing their characteristics in a form that facilitates their

anipulation during the optimization process. To represent test

uites as individuals (chromosomes) we used a binary vector. The

ector stores the information of the different test cases sequen-

ially, where each test case is represented by N bits, being N the

umber of features in the feature model. Thus, the total length

f a test suite with k test cases is k ∗N bits, where the first test

ase is represented by the bits between position 0 and N − 1 , the

econd test case is represented by the bits between position N

nd 2 ∗ N − 1 , and so on. The order of each feature in each test

ase corresponds to the depth-first traversal order of the tree. A

alue of 0 in the vector means that the corresponding feature is
ot included in the test case while a value of 1 means that such

eature is included. For efficiency reasons, mandatory features

re safely removed from input feature models using atomic sets

 Segura, 2008 ). Fig. 6 illustrates a test suite with its corresponding

ncoding based on the feature model showed in Fig. 1 (including

andatory features). Note that the length of the vector that

ncodes the solutions may differ depending on the number of test

ases contained in the test suite. 

.2. Initial population 

The generation of an appropriate set of initial solutions to the

roblem (a.k.a. seeding ) may have a strong impact to the final

erformance of the algorithm. Lopez-Herrejon et al. (2014) com-

ared several seeding strategies for MOEAs in the context of test

ase selection in software product lines and concluded that those

est suites including all the possible pairs of features (i.e. pairwise

overage) led to better results than random suites. Based on their

nding, our initial population is composed of different orderings

f a pairwise test suite generated by the CASA tool ( Garvin et al.,

011; 2009 ) from the input feature model. 

.3. Crossover operator 

The algorithm uses a customized one–point crossover operator.

irst, two parent chromosomes (i.e. test suites) are selected to be

ombined. Then, a random point is chosen in the vector (so-called

rossover point) and a new offspring is created by copying the

ontents of the vectors from the beginning to the crossover point

rom one parent and the rest from the other one. To avoid cre-

ting test suites with non-valid test cases, the crossover point is

ounded to the nearest multiple of N in the range [1, SP ], being

 the number of features in the model and SP the size of the

mallest parent. Fig. 7 illustrates a sample crossover operation

etween two chromosomes of different sizes. 

.4. Mutation operators 

We implemented three different mutation operators detailed

elow. 

• Test case swap . This mutation operation exchanges the ordering

of two randomly chosen test cases. 
• Test case addition/removal . This mutation operation adds (or re-

moves) a random test case at a randomly chosen index multiple

of N in the suite, being N the number of features in the model.
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Fig. 7. Crossover operator. 
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• Test case substitution . This mutation operation substitutes a

randomly chosen test case from the test suite by another valid

test case randomly generated. 

Note that all three operators generate feasible solutions, that is,

vectors that encode test cases fulfilling all the constraints of the

input feature model. Test suites including duplicated test cases as

a result of crossover and mutation are discarded. 

6. Objective functions 

In this section, we propose and formalize different objective

functions for test case prioritization in HCSs. All the functions

receive an attributed feature model representing the HCS under

test ( fm ) and a test suite ( ts ) as inputs and return an integer value

measuring the quality of the suite with respect to the optimization

goal. Note that the following functions will be later combined

to form multi-objective goals (see Section 7 ). To illustrate each

function, we use the feature model in Fig. 1 as fm and the test

suite ts = [ T C1 , T C2] with two of the test cases shown in Table 3 ,

which we reproduce next: 

TC1 = {Mobile Phone,Calls,Screen,Basic,Media, 
MP3} 

TC2 = {Mobile Phone,Calls,Screen,HD,GPS, 
Media,Camera,MP3} 

6.1. Functional objective functions 

We propose the following functional objective functions based

on the information extracted from the feature model. 

Coefficient of Connectivity-Density (CoC) . This metric calcu-

lates the complexity of a feature model in terms of the number of

edges and constraints of the model ( Bagheri and Gasevic, 2011 ). In

our previous work ( Sánchez et al., 2014 ), we adapted CoC to HCS

configurations achieving good results in accelerating the detection

of faults. Now we propose to measure the complexity of features

in terms of the number of edges and constraints in which they

are involved. This function calculates and accelerates the CoC of a
est suite, giving priority to those test cases covering features with

igher CoC more quickly. Formally, let the function coc ( fm, ts.tc i )

eturn a value indicating the complexity of the features included

n the test case tc i at position i in test suite ts , considering only

hose features not included in preceding test cases t c 1 ..t c i −1 of

est suite ts . This objective function is defined as follows: 

onnect i v it y ( f m, t s ) = 

| ts | ∑ 

i =1 

coc( f m, t s.t c i ) 

i 
(1)

s example, test case TC1 has a CoC of 13 computed as follows: 4

dges in Mobile Phone , 1 edge in Calls , 3 edges in Screen , 1
dge in Basic , 3 edges in Media and 1 edge in MP3 . Let us now

onsider TC2 . Notice that the selected features in TC2 that have

ot already been considered by TC1 are HD , GPS , and Camera .
ence TC2 has a value of 5 computed as follows: 2 edges in HD , 1
dge in GPS , and 2 edges in Camera . Now considering that TC1
s placed in the position 1 and TC2 in position 2, we calculate the

unction Connectivity as follows: 

onnect i v it y ( f m, t s ) = (13 / 1) + (5 / 2) 

= 13 + 2 . 5 = 15 . 5 

Dissimilarity . Some pieces of work have shown that two

issimilar test cases have a higher fault detection rate than sim-

lar ones since the former ones are more likely to cover more

omponents than the latter ( Henard et al., 2014; Sánchez et al.,

014 ). This function favors a test suite with the most different test

ases in order to cover more features and improve the rate and

cceleration of fault detection. Formally, let the function df ( fm, tc i )

eturn the number of different features found in the test case tc i 
hat were not considered in preceding test cases t c 1 ..t c i −1 . This

bjective function is defined as follows: 

issimilarit y ( f m, t s ) = 

| ts | ∑ 

i =1 

df ( f m, t s.t c i ) 

i 
(2)

est case TC1 has a Dissimilarity value of 6 because it considers

he following features: Mobile Phone , Calls , Screen , Basic ,
edia and MP3 . Test case TC2 has Dissimilarity value of 3 be-

ause it considers the following features that were not part of

C1 : HD , GPS and Camera . Now considering that TC1 is placed

n the position 1 and TC2 in position 2, we calculate the function

issimilarity as follows: 

issimilarit y ( f m, t s ) = (6 / 1) + (3 / 2) 

= 6 + 1 . 5 = 7 . 5 

Pairwise coverage . Many pieces of work have used pairwise

overage based on the evidence that a high percentage of detected

aults are mainly due to the interactions between two features

e.g. Ferrer et al., 2012; Henard et al., 2012; Sánchez et al., 2014 ).

his objective function measures and accelerates the pairwise

overage of a test suite, giving priority to those test cases that

over a higher number of pairs of features more quickly. Formally,

et the function pc ( fm, tc i ) return the number of pairs of features

overed by the test case tc i that were not covered by preceding

est cases t c 1 ..t c i −1 . This objective function is defined as follows: 

 airwise ( f m, ts ) = 

| ts | ∑ 

i =1 

pc( f m, t s.t c i ) 

i 
(3)

est case TC1 , covers 36 different pairs of features such as the

air [ Calls , ¬ GPS ] that indicates the feature Calls is selected in

C1 and the feature GPS is not selected. Test case TC2 covers 27

ifferent pairs of features such as the pair [ HD , GPS ] which indicates

hat both features HD and GPS are selected. Now considering that
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C1 is placed in the position 1 and TC2 in position 2, we calculate

he function Pairwise as follows: 

 airwise ( f m, ts ) = (36 / 1) + (27 / 2) 

= 36 + 13 . 5 = 49 . 5 

Variability coverage and cyclomatic complexity . From a

eature model, Cyclomatic Complexity measures the number of

ross-tree constraints ( Bagheri and Gasevic, 2011 ), while Variability

overage measures the number of variation points ( Ensan et al.,

012 ). A variation point is any feature that provides different

ariants to create a product, i.e. optional features and non-leaf

eatures with one or more non-mandatory subfeatures. These

etrics have been jointly used in previous works as a way to

dentify the most effective test cases in exposing faults, i.e. the

igher the sum of both metrics, the better the test case ( Ensan

t al., 2012; Sánchez et al., 2014 ). Now, we propose a function

hat calculates these metrics and gives priority to those test cases

btaining higher values more quickly. Formally, let function vc ( fm,

c i ) return the number of different cross-tree constraints and the

umber of variation points involved on the features included in

he test case tc i that were not included in preceding test cases

 c 1 ..t c i −1 . This objective function is defined as follows: 

 Cov erage ( f m, ts ) = 

| ts | ∑ 

i =1 

v c( f m, t s.t c i ) 

i 
(4)

The features in test case TC1 have 3 variation points in Mobile
hone , Screen and Media features. The features in test case TC2

hat were not included in test case TC1 are GPS , HD and Camera .
rom these three features: GPS has one variation point (adds 1),

nd HD and Camera are involved in a cross-tree constraint (add

). Now considering that TC1 is placed in the position 1 and TC2
n position 2, we calculate the function VCoverage as follows: 

 Cov erage ( f m, ts ) = (3 / 1) + (3 / 2) 

= 3 + 1 . 5 = 4 . 5 

.2. Non-functional objectives functions 

We propose the following non–functional objective functions

ased on extra–functional information of the features of an HCS. 

Number of changes . The number of changes has been shown

o be a good indicator of error proneness and can be helpful to

redict faults in later versions of systems (e.g. Graves et al., 1998;

oo and Harman, 2012a ). Our work adapts this metric for features

n HCSs. This objective function measures the number of changes

overed by a test suite and the speed covering those changes,

iving a higher value to those test cases that exercise the features

ith greater number of changes earlier. Therefore, this objective

unction uses historical data of the HCS under test. Formally, let

he function nc ( fm, tc i ) return the number of code changes covered

y features of the test case tc i at position i that were not covered

y preceding test cases t c 1 ..t c i −1 . Note that we consider a test case

o cover a change if it includes the features where the change was

ade. This objective function is defined as follows: 

hanges ( f m, ts ) = 

| ts | ∑ 

i =1 

nc( f m, t s.t c i ) 

i 
(5)

lease refer to Table 1 . Test case TC1 covers the following number

f changes: 6 changes in the feature Calls , 2 changes in Screen ,
 change in Basic , 9 changes in Media and 11 in the feature

P3 . In total TC1 covers 29 changes. Test case TC2 considers three

ew features HD , GPS and Camera , which respectively cover 3, 8,

nd 11 changes. In total TC2 covers 22 changes. Now considering

hat TC1 is placed in the position 1 and TC2 in position 2, we
alculate the function Changes as follows: 

hanges ( f m, ts ) = (29 / 1) + (22 / 2) 

= 29 + 11 = 40 

Number of faults . Earlier studies have shown that the detec-

ion of faults in an application can be accelerated by testing first

hose components that showed to be more error-prone in previous

ersions of the software. This is referred to as history-based test

ase prioritization ( Huang et al., 2010; Simons and Paraiso, 2010 ).

ur work adapts this metric for features in HCSs. This objective

unction calculates the number of faults detected by a test suite

nd its speed revealing those faults, giving a higher value to those

est cases that detect more faults faster. This objective uses his-

orical data about the faults reported in a previous version of the

CS under test. Formally, let function nf ( fm, tc i ) return the number

f faults detected by the test case tc i that were not detected by

receding test cases t c 1 ..t c i −1 . Note that we consider a test case to

etect a fault if it includes the feature(s) that triggered the fault.

his objective function is defined as follows: 

 ault s ( f m, t s ) = 

| ts | ∑ 

i =1 

n f ( f m, t s.t c i ) 

i 
(6)

lease refer to Table 1 . Test case TC1 detects: 10 faults in the

eature Calls , 4 faults in feature Screen , 0 faults in feature

asic , 5 faults in feature Media and 8 faults in feature MP3 .
he total number of faults detected by TC1 is 27. Test case TC2
onsiders three new features HD , GPS and Camera which re-

pectively detect 3, 6 and 8 faults. In total TC2 detects 17 faults.

ow considering that TC1 is placed in the position 1 and TC2 in

osition 2, we calculate the function Faults as follows: 

 ault s ( f m, t s ) = (27 / 1) + (17 / 2) 

= 27 + 8 . 5 = 35 . 5 

Feature size . The size of a feature, in terms of its number of

ines of Code (LoC), has been shown to provide a rough idea of

he complexity of the feature and its error proneness ( Lew et al.,

988; Matsumoto et al., 2010; Sánchez et al., 2015b ). This objective

unction measures the size of the features involved in a test suite,

iving priority to those test cases covering higher portions of

ode faster. Formally, let function fs ( fm, tc i ) return the size of the

eatures included in the test case tc i that were not included in

receding test cases t c 1 ..t c i −1 . This objective function is defined as

ollows: 

ize ( f m, ts ) = 

| ts | ∑ 

i =1 

f s ( f m, t s.t c i ) 

i 
(7) 

lease refer to Table 1 . The size contributed by test case TC1 is

,690 LoC computed by adding: 10 0 0 for feature Calls , 930 for

eature Screen , 270 for feature Basic , 1100 for feature Media
nd 390 for feature MP3 . The new features that test case TC2 con-

iders are: feature HD with size 510, feature GPS with size 460 and

eature Camera with size 680. Hence, the total for test case TC2
s 1,650 LoC. Now considering that TC1 is placed in the position 1

nd TC2 in position 2, we calculate the function Size as follows: 

ize ( f m, ts ) = (3690 / 1) + (1650 / 2) 

= 3690 + 825 = 4515 

. Evaluation 

This section explains the experiments conducted to explore

he effectiveness of multi–objective test case prioritization in

rupal. First, we introduce the target research questions and the

eneral experimental setup. Second, the results of the different

xperiments and the statistical results are reported. 
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Table 6 

Parameter settings for the evolutionary algorithm. 

Parameter Value 

Population size 100 

Number of generations 50 

Crossover probability 0.9 

Test case swap mutation probability 0.4 ∗(1/ N ) 

Test case addition/removal mutation probability 0.3 ∗(1/ N ) 

Test case substitution mutation probability 0.3 ∗(1/ N ) 
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7.1. Research questions 

In previous works, we investigated the effectiveness of func-

tional ( Sánchez et al., 2014 ) and non–functional ( Sánchez et al.,

2015b ) test case prioritization criteria for HCSs from a single–

objective perspective. In this paper, we go a step further in order

to answer the following Research Questions (RQs): 

RQ1 : Can multi-objective prioritization with functional objective

functions accelerate the detection of faults in HCSs? 

RQ2 : Can multi-objective prioritization with non-functional

objective functions accelerate the detection of faults in HCSs? 

RQ3 : Can multi-objective prioritization with combinations of

functional and non-functional objective functions accelerate

the detection of faults in HCSs? 

RQ4 : Are non-functional prioritization objectives (either in a single

or multi-objective perspective) more, less or equally effective

than functional prioritization objectives in accelerating the

detection of faults in HCSs? 

RQ5 : What is the performance of the proposed MOEA compared

to related algorithms? 

7.2. Experimental setup 

To answer our research questions, we implemented the al-

gorithm and the objective functions described in Sections 5 and

6 respectively. To put it simply, our algorithm takes the Drupal

attributed feature model as input and generates a set of prioritized

test suites according to the target objective functions. In particular,

the algorithms were executed with all the possible combinations of

1, 2 and 3 of the objectives functions described in Section 6 , yield-

ing 63 combinations in total. In all cases, the goal was to generate

prioritized test suites that maximize each objective function, e.g.

max(Changes) and max(VCoverage). For each combination of objec-

tives, the algorithms were executed 40 times to perform statistical

analysis of the data. The configuration parameters of the NSGA-II

algorithm are depicted in Table 6 . These were selected based on

the recommended parameters for NSGA-II ( Deb et al., 2002 ) and

the results of some preliminary tuning experiments. Note that

the recommended default mutation probability for NSGA-II is 1/ N ,

where N is the number of variables of the problem, i.e. number

of test cases in the suite. The average number of test cases in the

pairwise suites generated by CASA and used as seed was 13. 

The search-based algorithms were implemented using jMetal

( Durillo and Nebro, 2011 ), a Java framework to solve multi–

objective optimization problems. The non-functional objective

functions were calculated using the Drupal feature attributes

reported in Table 2 . In particular, the objective function Faults
was calculated on the basis of the faults detected in Drupal v7.22.

The function Pairwise was implemented using the tool SPLCAT

( Johansen et al., 2011 ) which generates all the possible pairs of

features of an input feature model. Random valid products (used

in one of our mutation operators) were generated using the tool

PLEDGE ( Henard et al., 2014 ), which internally uses a SAT solver. 

The prioritized test suites generated by the algorithm were

evaluated according to their ability to accelerate the detection of
aults in Drupal. To that purpose, we used the information about

he faults reported in Drupal v7.23 (3,392 in total, including single

nd integration faults) to measure how quickly they would be

etected by the generated suites. More specifically, we created a

ist of faulty feature sets simulating the faults reported in the bug

racking system of Drupal v7.23. Each set represents faults caused

y n features ( n ∈ [1, 4]). For instance, the list {{ Node },{ Views ,
tools }} represents a fault in the feature Node and another

ault triggered by the interaction between the features Views and

tools . We considered that a test case detects a fault if the test

ase includes the feature(s) that trigger the fault. As a further ex-

mple, consider the list of faulty features {{ Media },{ HD },{ Camera ,
PS }} and the following test case for the feature model in Fig. 1 :

 Mobile Phone , Calls , Screen , HD , Media , Camera }. The test

ase would detect the fault in Media and HD but not the interac-

ion fault between Camera and GPS since GPS is not included in

he configuration. 

In order to evaluate how quickly faults are detected during

esting (i.e., rate of fault detection) we used the Average Percent-

ge of Faults Detected (APFD) metric described in Section 4.2.2 .

iven a prioritized test suite, this metric was used to measure how

uickly it would detect the faults in Drupal v7.23. For comparative

easons, we measured the APFD values of both, the prioritized

uites generated by our adaptation of NSGA-II and the initial

airwise suite generated by the CASA algorithm ( Garvin et al.,

011; 2009 ) on each execution. 

In addition to the comparison between NSGA-II and CASA,

e compared NSGA-II with a random search algorithm and a

eterministic state of the art prioritization algorithm. The details

f this comparison are presented in Section 7.7 . 

We ran our tests on an Ubuntu 14.04 machine equipped with

NTEL i7 with 8 cores running at 3.4 Ghz and 16 GB of RAM. 

.3. Experiment 1. Functional objectives 

In this experiment, we evaluated the rate of fault detection

chieved by each group of 1, 2 and 3 functional objectives, 14

ombinations in total. The results of the experiment are shown

n Table 7 . For each set of objectives, the table shows the results

f 40 different executions of NSGA-II and CASA respectively. For

SGA-II, the table depicts the average APFD value of all the test

uites generated (i.e., Pareto optimal solutions), average of the

aximum APFD value achieved on each execution and maximum

PFD value obtained in all the executions respectively. For CASA,

he table shows the average and maximum APFD values achieved

n all the executions. The top three best average and maximum

PFD values of the table are highlighted in boldface. We must re-

ark that all the test suites generated detected at least 99% of the

mulated faults. Thus, we omit the results related to the number

f faults detected and focus on how quickly they were detected. 

The results in Table 7 show that all the functional prioritization

bjectives, single or combined, outperformed CASA on both the

verage and maximum APFD values obtained. In total, NSGA-II

chieved an average APFD value of 0.918 while CASA achieved

.872. This was expected since CASA was not conceived as a

est case prioritization algorithm. It is also noteworthy that the

airwise objective produced the worst results. This finding is

lso observed in the box plot of Fig. 8 which illustrates the distri-

utions of the maximum APFD values found on each execution of

SGA-II (40 in total). The Pairwise objective function obtained

he lowest minimum, maximum and median values. This is lined

ith the results of CASA and it suggests that pairwise coverage

s not an effective prioritization criterion. Interestingly, however,

espite the bad performance of Pairwise as a single objective,

ts combination with other objectives provides good results in gen-

ral, since it is involved in the objective combinations with better
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Table 7 

APFD values achieved by functional prioritization objectives. 

Objectives NSGA-II CASA 

Avg Avg Max Max Avg Max 

Connectivity 0.923 0.936 0.957 0.874 0.939 

Dissimilarity 0.905 0.928 0.956 0.865 0.934 

Pairwise 0.887 0.887 0.951 0.862 0.934 

VCoverage 0.888 0.934 0.956 0.874 0.946 

Connectivity + Pairwise 0.932 0.951 0.959 0.883 0.939 

Connectivity + Dissimilarity 0.906 0.935 0.960 0.863 0.947 

Connectivity + VCoverage 0.919 0.936 0.957 0.874 0.944 

Dissimilarity + Pairwise 0.941 0.952 0.958 0.888 0.948 

Dissimilarity + VCoverage 0.909 0.934 0.959 0.865 0.944 

Pairwise + VCoverage 0.933 0.948 0.957 0.867 0.941 

Connectivity + Dissimilarity + Pairwise 0.933 0.953 0.957 0.878 0.946 

Connectivity + Dissimilarity + VCoverage 0.908 0.935 0.957 0.872 0.937 

Connectivity + Pairwise + VCoverage 0.935 0.951 0.959 0.876 0.940 

Dissimilarity + Pairwise + VCoverage 0.937 0.953 0.959 0.865 0.937 

Average 0.918 0.938 0.957 0.872 0.941 

Fig. 8. Box plot of the maximum APFD achieved on each execution (40 in total). 
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edians and averages. It is also observed that multi-objective

ombinations provide better distributions of APFD values than

ingle objectives. 

In order to accurately answer the research questions we per-

ormed several hypothesis statistical tests. Specifically, for each

ingle functional objective (e.g. Connectivity ) and combina-

ion of two or three functional objectives (e.g. Pairwise and

issimilarity ) we stated a null and alternative hypothesis.

he null hypothesis ( H 

0 ) states that there is not a statistically

ignificant difference between the results obtained by both sets

f objectives while the alternative hypothesis ( H 

1 ) states that

uch difference is statistically significant. Statistical tests provide

 probability (named p-value) ranging in [0, 1]. Researchers have

stablished by convention that p-values under 0.05 are so-called

tatistically significant and are sufficient to reject the null hypoth-

sis. Since the results do not follow a normal distribution, we used

he Mann-Whitney U Tests for the analysis ( Mann and Whitney,

947 ). Additionally, a correction of the p-values was performed us-

ng the Holms post-hoc procedure ( Holm, 1979 ) as recommended

n Derrac et al. (2011) . The tables of specific p-values are provided

s supplementary material. 

As a further analysis, we used Vargha and Delaney’s ̂ A 12 

tatistic ( Arcuri and Briand, 2014 ) to evaluate the effect size, i.e.,

etermine which mono or multi–objective combinations perform

etter and to what extent. Table 8 shows the effect size statistic.

ach cell shows the ̂ A value obtained when comparing the single
12 
bjectives in the columns against the combination of objectives in

he rows. Note that CASA was considered as another prioritization

bjective in our analysis. Vargha and Delaney (20 0 0) suggested

hresholds for interpreting the effect size: 0.5 means no difference

t all; values over 0.5 indicates a small (0.5-0.56), medium (0.57-

.64), large (0.65-0.71) or very large (0.72-1) difference in favour

f the multiple objective in the row; values below 0.5 indicates

 small (0.5-0.44), medium (0.43-0.36), large (0.36-0.29) or very

arge (0.29-0.0) difference in favour of the single objective in

he column. Cells revealing very large differences are highlighted

n light grey (in favour of the row) and dark grey (in favour of

he column). Values in boldface are those where hypothesis test

evealed statistical differences ( p -value < 0.05). Statistical results

onfirm the bad performance of CASA and the Pairwise objec-

ive function compared to the rest of objectives. Since values in

able 8 are in general above 0.5 and most of the cells are shaded

n light gray, general results confirm that multi–objective prioriti-

ation provides better results for the rate of fault detection than

ono–objective prioritization when using functional objectives. 

The average execution time of NSGA-II for all the functional ob-

ectives was 12.1 minutes, with a maximum average execution time

f 3.6 hours for the combination of objectives Connectivity
 Pairwise + VCoverage , and a minimum execution time

f 69 seconds for the objective Dissimilarity . It is noticeable

hat all the executions including the objective Pairwise took

n average execution time longer than 20 minutes, due to the

verhead introduced by the calculation of the pairwise coverage.

he average execution time of CASA was 5 seconds. 

.4. Experiment 2. Non–functional objectives 

In this experiment, we evaluated the rate of fault detection

chieved by each group of 1, 2 and 3 non–functional prioritization

bjectives, 7 combinations in total. Table 9 presents the APFD

alues achieved by NSGA-II and CASA with each set of objectives.

s in the previous experiment, the average and maximum APFD

alues achieved by NSGA-II (with any objective) were higher than

hose achieved by CASA. This confirms the poor performance of

airwise coverage as a prioritization criterion. Interestingly, the

aults objective function is involved in the best average and

aximum APFD values. This suggests that the number of faults

n previous versions of the system is a key factor to accelerate

he detection of faults. All the test suites generated detected more

han 99.9% of the emulated faults. 

Fig. 9 depicts a box plot of the distributions of the maximum

PFD value achieved on each execution of NSGA-II. The graph



298 J.A. Parejo et al. / The Journal of Systems and Software 122 (2016) 287–310 

Table 8 ̂ A 12 values for mono vs. multi–objective prioritization using functional objectives. Cells revealing very large statistical differences are 

highlighted in light grey (in favour of the row) and dark grey (in favour of the column). Values in boldface reveal statistically significant 

differences (the p -value with Holm’s correction < 0.05). 

Functional Multi-Objective
Functional Mono-Objective CASA

Connectivity Dissimilarity Pairwise VCoverage

Connectivity + Dissimilarity 0.484 0.587 0.923 0.527 0.946
Connectivity + Pairwise 0.801 0.880 0.992 0.839 0.999
Connectivity + VCoverage 0.528 0.631 0.893 0.577 0.924
Dissimilarity + Pairwise 0.840 0.911 0.994 0.873 0.994
Dissimilarity + VCoverage 0.489 0.593 0.901 0.530 0.914

896.0egarevoCV+esiwriaP 0.791 0.983 0.757 0.997

Connectivity + Dissimilarity + Pairwise 0.851 0.921 0.996 0.884 0.998
Connectivity + Dissimilarity + VCoverage 0.504 0.606 0.921 0.552 0.924
Connectivity + Pairwise + VCoverage 0.789 0.870 0.988 0.831 1.000
Dissimilarity + Pairwise + VCoverage 0.855 0.924 0.994 0.892 1.000

CASA 0.064 0.054 0.276 0.073 -

Table 9 

APFD values achieved by non-functional prioritization objectives. 

Objectives NSGA-II CASA 

Avg Avg Max Max Avg Max 

Changes 0.902 0.922 0.959 0.871 0.927 

Faults 0.955 0.955 0.959 0.873 0.944 

Size 0.921 0.934 0.955 0.868 0.932 

Changes + Faults 0.953 0.955 0.959 0.865 0.952 

Changes + Size 0.915 0.936 0.956 0.868 0.938 

Faults + Size 0.955 0.955 0.959 0.876 0.940 

Changes + Faults + Size 0.952 0.955 0.959 0.871 0.942 

Average 0.936 0.945 0.958 0.871 0.939 

Fig. 9. Box plot of the maximum APFD achieved on each execution (40 in total). 

 

 

 

 

 

 

 

 

 

Table 10 ̂ A 12 values for mono vs. multi-objective prioritization using non–functional objec- 

tives. Cells revealing very large statistical differences are highlighted in light grey 

(in favour of the row). Values in boldface reveal statistically significant differences 

(the p-value with Holms correction < 0.05). 

Non-Functional
Mono-Objective

Multi-Objective Changes Faults Size

Changes + Faults 0.955 0.565 0.968
Changes + Size 0.670 0.084 0.549
Faults + Size 0.960 0.597 0.978

Changes + Faults + Size 0.951 0.536 0.960
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clearly shows the dominance of the Faults objective function,

both in isolation and in combination with other objectives. This

was confirmed by the statistical tests, where p-values revealed

significant differences between the groups of objectives including

Faults and the rest of objectives. 

Table 10 shows the values of the ̂ A 12 effect size. CASA is

excluded from the table since it was clearly outperformed by

all other objectives. Again, the results show the superiority of

Faults , either in isolation or combined, when compared to any

other group of objectives. As in the previous experiment, all the
ulti–objective combinations improve the results obtained by sin-

le objectives, with 

̂ A 12 values over 0.5 in all cells except one. No

lear differences were found between the use of multi–objective

rioritization with two or three objectives. 

The average execution time of NSGA-II for all the combinations

f non-functional objectives was 3.7 minutes, with a maximum

verage execution time of 4.6 minutes for Faults + Size and a

inimum average execution time of 2.5 seconds for Size . 

.5. Experiment 3. Functional and non–functional objectives 

In this experiment, we evaluated the rate of fault detection

chieved by each mixed combination of 2 and 3 functional and

on–functional prioritization objectives, 48 combinations in total.

he results of the experiment are presented in Table 11 . The cells

ith the top three best average, average maximum, and global

aximum APFD values of the table are highlighted in boldface.

he results show that all the multi–objective combinations greatly

mproved CASA on the average, average maximum, and global

aximum APFD values obtained. As in the previous experiment,

0 out of the 12 top best APFD values were achieved by multi–

bjective combinations including the objective Faults , which

onfirms the effectiveness of fault history in accelerating the de-

ection of faults in Drupal. Analogously, 6 out of the 10 best APFD

alues include the objective Dissimilarity which confirms the

ndings of previous studies on the effectiveness of promoting the

ifferences among test cases to detect faults more quickly. As in

he previous experiments, all the test suites generated detected at

east the 99% of the seeded faults. 

Table 12 shows the values of the ̂ A 12 effect size on the com-

arison between single and multi–objective combinations of
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Table 11 

APFD values achieved by functional and non-functional prioritization objectives. 

Objectives NSGA-II CASA 

Avg Avg Max Max Avg Max 

Changes + Connectivity 0.911 0.936 0.959 0.871 0.942 

Changes + Dissimilarity 0.905 0.935 0.959 0.873 0.943 

Changes + Pairwise 0.938 0.952 0.959 0.878 0.950 

Changes + VCoverage 0.919 0.940 0.958 0.867 0.941 

Connectivity + Faults 0.954 0.955 0.959 0.884 0.935 

Connectivity + Size 0.915 0.941 0.959 0.881 0.946 

Dissimilarity + Faults 0.954 0.956 0.959 0.871 0.947 

Dissimilarity + Size 0.904 0.930 0.957 0.858 0.921 

Faults + Pairwise 0.944 0.954 0.959 0.868 0.944 

Faults + VCoverage 0.954 0.955 0.959 0.869 0.940 

Pairwise + Size 0.940 0.953 0.960 0.878 0.943 

Size + VCoverage 0.914 0.937 0.958 0.876 0.948 

Changes + Connectivity + Dissimilarity 0.908 0.938 0.958 0.873 0.935 

Changes + Connectivity + Faults 0.950 0.955 0.959 0.875 0.935 

Changes + Connectivity + Pairwise 0.936 0.953 0.958 0.862 0.933 

Changes + Connectivity + Size 0.914 0.942 0.959 0.878 0.929 

Changes + Connectivity + VCoverage 0.916 0.942 0.959 0.876 0.947 

Changes + Dissimilarity + Faults 0.952 0.955 0.959 0.880 0.936 

Changes + Dissimilarity + Pairwise 0.939 0.954 0.958 0.874 0.936 

Changes + Dissimilarity + Size 0.911 0.941 0.957 0.867 0.943 

Changes + Dissimilarity + VCoverage 0.910 0.946 0.957 0.869 0.945 

Changes + Faults + Pairwise 0.944 0.954 0.958 0.874 0.941 

Changes + Faults + VCoverage 0.951 0.955 0.959 0.883 0.946 

Changes + Pairwise + Size 0.941 0.955 0.963 0.866 0.952 

Changes + Pairwise + VCoverage 0.937 0.954 0.958 0.875 0.947 

Changes + Size + VCoverage 0.909 0.940 0.957 0.874 0.940 

Connectivity + Dissimilarity + Faults 0.954 0.956 0.960 0.877 0.941 

Connectivity + Dissimilarity + Size 0.913 0.941 0.959 0.879 0.941 

Connectivity + Faults + Pairwise 0.944 0.954 0.964 0.867 0.932 

Connectivity + Faults + Size 0.954 0.955 0.959 0.876 0.947 

Connectivity + Faults + VCoverage 0.953 0.955 0.959 0.858 0.925 

Connectivity + Pairwise + Size 0.937 0.954 0.962 0.870 0.937 

Connectivity + Size + VCoverage 0.908 0.936 0.959 0.881 0.954 

Dissimilarity + Faults + Pairwise 0.944 0.955 0.959 0.871 0.947 

Dissimilarity + Faults + Size 0.953 0.955 0.959 0.875 0.938 

Dissimilarity + Faults + VCoverage 0.953 0.956 0.964 0.876 0.947 

Dissimilarity + Pairwise + Size 0.940 0.954 0.959 0.868 0.944 

Dissimilarity + Size + VCoverage 0.913 0.941 0.957 0.873 0.936 

Faults + Pairwise + Size 0.942 0.955 0.959 0.863 0.937 

Faults + Pairwise + VCoverage 0.944 0.954 0.958 0.866 0.938 

Faults + Size + VCoverage 0.953 0.956 0.959 0.874 0.931 

Pairwise + Size + VCoverage 0.941 0.954 0.959 0.877 0.938 

Average 0.934 0.949 0.959 0.873 0.940 
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o  
unctional and non–functional objectives. Values indicate a better

erformance of multi–objective prioritization compared to single–

bjective prioritization with the exception of Faults where

ost cells were under 0.5. The overall dominance, however, was

bserved in the combination of objectives Dissimilarity +

aults followed by Dissimilarity + Faults + VCoverage ,
ith values over 0.6 in all cells and over 0.93 in 6 out of 7

olumns. 

Table 13 depicts the effect size on the comparison between

ulti–objective prioritization using functional objectives and

ulti–objective prioritization using both functional and non–

unctional objectives. In general, ̂ A 12 values show statistical

ifferences in favour or the combination of functional and

on-functional objectives, especially those including Faults .
nterestingly, all the cells revealing differences in favour of

unctional-objectives include the objective Pairwise , which

upports its potential when combined with other prioritization

bjectives, as observed in Experiment 1. 

Finally, Table 14 depicts the effect size on the comparison

etween multi–objective prioritization using non–functional objec-

ives and multi–objective prioritization using both functional and

on–functional objectives. ̂ A 12 values reveal that when Faults
s present in the combination of non–functional objectives, mixed
 e
ombinations are outperformed in general, showing large effect

izes and statistically significant differences. On the contrary,

ixed objective combinations including Faults clearly outper-

orm Changes + Size , but behave slightly worse than the other

ombinations of non-functional objectives. Therefore, the objective

aults seems to have a key influence in the performance of

rioritization providing slightly better result when combined with

ther non-functional objectives. It is remarkable, however, that

ome mixed combinations of objectives such as Dissimilarity
 Faults provided the best overall results of this experiment. 

The average execution time of NSGA-II for the mixed combi-

ations of functional and non–functional prioritization objectives

as 9.2 minutes. The maximum average execution time was 23.6

inutes reached by the objectives Connectivity + Faults
 Pairwise . The minimum execution time, 73.8 seconds, was

btained by the combination of objectives Connectivity +

ize + VCoverage . 

.6. Experiment 4. Functional vs non–functional objectives 

In this experiment, we performed a further statistical analysis

f the data obtained in previous experiments to measure the

ffect size on the comparison of functional objectives against non–
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Table 12 ̂ A 12 values for mono vs. multi–objective combinations of functional and non-functional objectives. Cells revealing very large statistical differences are 

highlighted in light grey (in favour of the row) and dark grey (in favour of the column). Values in boldface reveal statistically significant differences 

(the p -value with Holm’s correction is < 0.05). 

Mixed Multi-Objective
Functional Objectives Non-Functional Objectives

Connectivity Dissimilarity Pairwise VCoverage Changes Faults Size

936.0055.0ytivitcennoC+segnahC 0.902 0.588 0.693 0.124 0.596
416.0815.0ytiralimissiD+segnahC 0.906 0.573 0.671 0.118 0.563

Changes + Pairwise 0.814 0.893 0.993 0.856 0.899 0.298 0.858
336.0035.0egarevoCV+segnahC 0.954 0.571 0.701 0.131 0.583

Connectivity + Faults 0.924 0.967 1.000 0.946 0.948 0.556 0.966
486.0665.0eziS+ytivitcennoC 0.956 0.616 0.736 0.092 0.630

Dissimilarity + Faults 0.951 0.967 0.999 0.958 0.962 0.686 0.971
355.0554.0eziS+ytiralimissiD 0.879 0.481 0.601 0.108 0.497

Faults + Pairwise 0.885 0.947 0.997 0.914 0.931 0.418 0.931
Faults + VCoverage 0.936 0.964 0.999 0.949 0.956 0.589 0.972
Pairwise + Size 0.863 0.931 0.994 0.903 0.914 0.336 0.893

136.0245.0egarevoCV+eziS 0.924 0.584 0.685 0.101 0.580

Changes + Connectivity + Dissimilarity 0.534 0.634 0.939 0.570 0.681 0.128 0.578
Changes + Connectivity + Faults 0.918 0.961 0.998 0.938 0.944 0.509 0.953
Changes + Connectivity + Pairwise 0.877 0.939 0.995 0.907 0.921 0.370 0.911
Changes + Connectivity + Size 0.593 0.693 0.958 0.646 0.744 0.143 0.644
Changes + Connectivity + VCoverage 0.573 0.673 0.960 0.623 0.743 0.176 0.633
Changes + Dissimilarity + Faults 0.932 0.965 0.999 0.948 0.952 0.570 0.963
Changes + Dissimilarity + Pairwise 0.873 0.936 0.995 0.911 0.925 0.384 0.910
Changes + Dissimilarity + Size 0.541 0.639 0.963 0.589 0.728 0.121 0.600
Changes + Dissimilarity + VCoverage 0.677 0.761 0.970 0.731 0.812 0.189 0.730
Changes + Faults + Pairwise 0.910 0.948 0.996 0.930 0.941 0.471 0.942
Changes + Faults + VCoverage 0.926 0.963 0.999 0.944 0.950 0.554 0.964
Changes + Pairwise + Size 0.909 0.953 0.996 0.930 0.939 0.494 0.938
Changes + Pairwise + VCoverage 0.888 0.947 0.997 0.917 0.932 0.429 0.925
Changes + Size + VCoverage 0.573 0.682 0.943 0.620 0.729 0.093 0.625
Connectivity + Dissimilarity + Faults 0.940 0.963 0.999 0.956 0.959 0.624 0.973
Connectivity + Dissimilarity + Size 0.558 0.659 0.951 0.606 0.728 0.133 0.622
Connectivity + Faults + Pairwise 0.899 0.946 0.998 0.922 0.938 0.457 0.931
Connectivity + Faults + VCoverage 0.929 0.970 0.999 0.949 0.949 0.616 0.961
Connectivity + Faults + Size 0.934 0.964 1.000 0.948 0.954 0.577 0.968
Connectivity + Pairwise + Size 0.903 0.949 0.997 0.926 0.939 0.450 0.942
Connectivity + Size + VCoverage 0.521 0.626 0.919 0.548 0.665 0.144 0.570
Dissimilarity + Faults + Pairwise 0.915 0.957 0.998 0.934 0.942 0.496 0.947
Dissimilarity + Faults + Size 0.936 0.968 0.999 0.953 0.955 0.620 0.971
Dissimilarity + Faults + VCoverage 0.940 0.963 0.998 0.957 0.960 0.637 0.968
Dissimilarity + Pairwise + Size 0.895 0.950 0.998 0.921 0.931 0.391 0.926
Dissimilarity + Size + VCoverage 0.572 0.680 0.953 0.622 0.742 0.123 0.628
Faults + Pairwise + Size 0.914 0.958 0.999 0.938 0.946 0.479 0.953
Faults + Pairwise + VCoverage 0.905 0.951 0.997 0.930 0.938 0.442 0.935
Faults + Size + VCoverage 0.937 0.968 0.999 0.956 0.959 0.616 0.969
Pairwise + Size + VCoverage 0.887 0.946 0.997 0.914 0.931 0.447 0.932

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Random search algorithm 

1: procedure RS ( a f m ) 

2: i ← 1 

3: pF ront ← {} 
4: while i ≤ nIterations do 

5: sol ← randomSuite (a f m, maxSize ) 

6: if isNotDomiated(sol, pF ront) then 

7: pF ront ← notDominated(pF ront, sol) 
⋃ 

sol 

8: end if 

9: i ← i + 1 

10: end while 

11: return pF ront 

12: end procedure 
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functional objectives, both single and combined. Table 15 shows

the values of the ̂ A 12 effect size. A majority of cells show 

̂ A 12 

values under 0.5 indicating that non-functional objectives are in

general more effective than functional objectives for test case

prioritization in HCSs. As observed in Experiment 2 and 3, the ob-

jective Faults , and those combinations including it consistently

show the largest differences. Also, as observed in Experiment

1, the objective Pairwise is consistently outperformed by all

non-functional objectives, but it provides the best results in favour

of functional objectives when combined with others. 

7.7. Experiment 5. Algorithm comparison 

In this experiment, we compared the performance of NSGA-II

with a random search algorithm and a deterministic test case

prioritization algorithm. The experimental setup and results of

both comparisons are described in the following sections. 

7.7.1. Comparison with random search 

The pseudo-code of our implementation of Random Search (RS)

algorithm is described in Algorithm 1 . The algorithm takes an input

attributed feature model afm and returns a set of test suites opti-
izing the target objectives. The algorithm has two configuration

arameters: the number of iterations to be performed nIterations ,

nd the maximum size of the random test suites to be generated

axSize . We set maxSize to the ceiling for the average size of the

airwise suites generated by CASA (13 test cases). Regarding the

alue of nIterations , we set its values to 50 0 0, in order to ensure a
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Table 13 ̂ A 12 values for combinations of functional objectives vs. mixed combinations of functional and non–functional prioritization objectives. Cells revealing very large 

statistical differences are highlighted using dark grey (in favour of the column) or light grey (in favour of the row). Values in boldface reveal statistically significant 

differences (the p -value with Holm’s correction is < 0.05). 

Mixed Multi-Objective
Functional Multi-Objective

Con+Dis Con+Pai Con+VCo Dis+Pai Dis+VCo Pai+VCo Con+Dis+Pai Con+Dis+VCo Con+Pai+VCo Dis+Pai+VCo

Changes + Con 0.556 0.267 0.529 0.221 0.559 0.386 0.203 0.547 0.284 0.208
Changes + Dis 0.518 0.242 0.489 0.198 0.531 0.363 0.187 0.513 0.268 0.199
Changes + Pai 0.800 0.523 0.792 0.463 0.827 0.703 0.418 0.810 0.551 0.438
Changes + VCo 0.536 0.245 0.488 0.211 0.541 0.338 0.200 0.517 0.248 0.201
Con + Faults 0.900 0.738 0.921 0.713 0.938 0.893 0.667 0.909 0.753 0.683
Con + Size 0.573 0.242 0.534 0.189 0.580 0.388 0.168 0.571 0.271 0.178
Dis + Faults 0.915 0.823 0.947 0.811 0.956 0.919 0.778 0.924 0.803 0.769
Dis + Size 0.463 0.208 0.424 0.176 0.467 0.294 0.156 0.442 0.216 0.162
Faults + Pai 0.864 0.641 0.878 0.600 0.910 0.830 0.560 0.879 0.676 0.580
Faults + VCo 0.906 0.780 0.932 0.754 0.956 0.907 0.721 0.916 0.767 0.719
Pai + Size 0.834 0.571 0.849 0.519 0.878 0.790 0.473 0.854 0.637 0.503
Size + VCo 0.544 0.239 0.515 0.196 0.549 0.363 0.175 0.537 0.272 0.180

Changes + Con + Dis 0.528 0.253 0.492 0.220 0.540 0.367 0.198 0.519 0.270 0.214
Changes + Con + Faults 0.888 0.730 0.917 0.694 0.940 0.877 0.654 0.900 0.736 0.668
Changes + Con + Pai 0.849 0.618 0.864 0.563 0.896 0.798 0.508 0.869 0.651 0.543
Changes + Con + Size 0.602 0.281 0.559 0.238 0.606 0.420 0.217 0.592 0.318 0.227
Changes + Con + VCo 0.585 0.293 0.540 0.256 0.586 0.394 0.244 0.573 0.299 0.237
Changes + Dis + Faults 0.898 0.758 0.927 0.736 0.947 0.898 0.688 0.908 0.761 0.701
Changes + Dis + Pai 0.849 0.621 0.864 0.570 0.896 0.802 0.524 0.865 0.648 0.543
Changes + Dis + Size 0.557 0.224 0.497 0.189 0.548 0.323 0.181 0.526 0.231 0.171
Changes + Dis + VCo 0.674 0.373 0.645 0.319 0.690 0.517 0.296 0.669 0.389 0.298
Changes + Faults + Pai 0.877 0.708 0.902 0.672 0.933 0.854 0.622 0.890 0.707 0.643
Changes + Faults + VCo 0.901 0.754 0.933 0.735 0.946 0.898 0.687 0.912 0.761 0.705
Changes + Pai + Size 0.876 0.706 0.900 0.662 0.924 0.848 0.624 0.893 0.716 0.634
Changes + Pai + VCo 0.859 0.650 0.874 0.603 0.906 0.823 0.549 0.876 0.678 0.580
Changes + Size + VCo 0.581 0.242 0.549 0.189 0.590 0.395 0.171 0.585 0.277 0.171
Con + Dis + Faults 0.911 0.798 0.944 0.783 0.957 0.914 0.742 0.922 0.780 0.745
Con + Dis + Size 0.570 0.268 0.520 0.227 0.569 0.388 0.213 0.554 0.278 0.215
Con + Faults + Pai 0.868 0.689 0.891 0.645 0.920 0.844 0.604 0.887 0.700 0.619
Con + Faults + Size 0.906 0.772 0.935 0.753 0.954 0.909 0.713 0.917 0.770 0.722
Con + Faults + VCo 0.900 0.757 0.925 0.742 0.938 0.894 0.706 0.917 0.772 0.718
Con + Pai + Size 0.875 0.698 0.888 0.646 0.927 0.846 0.604 0.888 0.700 0.620
Con + Size + VCo 0.519 0.268 0.495 0.236 0.537 0.372 0.216 0.524 0.284 0.220
Dis + Faults + Pai 0.886 0.719 0.911 0.689 0.936 0.871 0.643 0.898 0.727 0.664
Dis + Faults + Size 0.907 0.779 0.941 0.764 0.951 0.907 0.723 0.917 0.779 0.734
Dis + Faults + VCo 0.909 0.792 0.936 0.779 0.950 0.906 0.736 0.917 0.777 0.738
Dis + Pai + Size 0.866 0.655 0.883 0.602 0.914 0.838 0.543 0.878 0.688 0.576
Dis + Size + VCo 0.584 0.257 0.540 0.213 0.588 0.399 0.199 0.578 0.284 0.198
Faults + Pai + Size 0.883 0.716 0.915 0.676 0.936 0.876 0.628 0.898 0.723 0.649
Faults + Pai + VCo 0.872 0.691 0.901 0.647 0.924 0.856 0.595 0.885 0.707 0.619
Faults + Size + VCo 0.908 0.783 0.937 0.765 0.950 0.910 0.729 0.923 0.780 0.737
Pai + Size + VCo 0.871 0.663 0.891 0.632 0.911 0.835 0.586 0.876 0.691 0.606
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air comparison with NSGA-II, which performs 50 iterations with

 population of 100 individuals ( 50 ∗ 100 = 5000 evaluations). 

Three functions are invoked in the pseudo-code of Algorithm 1 :

) randomSuite , that generates a suite of random size (between 1

nd maxSize ), comprising of random products generated using the

LEDGE tool ( Henard et al., 2014 ); ii) isNotDominated that checks if

he solution sol provided as parameter is not dominated by any so-

ution in the Pareto front estimation pFront ; and iii) notDominated

hat returns the solutions from pFront that are dominated by sol . 

Table 16 shows the results of the comparison. For each group

f objectives and algorithm under comparison, the table shows

he execution time, average and maximum APFD value of the

est suites in the Pareto front. The best values of each metric

n each row are highlighted in boldface. As illustrated, NSGA-II

utperforms RS in 58 out of the 63 combinations of objectives

n terms of average APDF value. Interestingly, there is not a clear

inner in terms of execution time: RS was faster in 36 out of the

3 objective groups (57.2%) meanwhile NSGA-II achieved lower

verage execution times in 42.8% of the objectives. We found

hat the overhead in the RS algorithm was due to the cost of

enerating random valid test cases. In terms of fault detection,

SGA-II detected slightly more faults than RS. However, both

lgorithms detected more than 99.5% of the emulated faults and

hus the differences are not significant. 

Table 17 shows the average, standard deviation and maxi-

um values of the hypervolume achieved by each algorithm

nd objective group under comparison. The hypervolume is the
-dimensional space contained by a set of solutions with respect

o a reference point ( Beume et al., 2009 ). The hypervolume metric

s widely used to compare the performance of multi-objective

lgorithms, where solutions with a larger hypervolume provide a

etter trade-offs among objectives than solutions with a smaller

ypervolume. The best values of each metric on each row are high-

ighted in boldface. NSGA-II provides better results for the majority

f executions both in terms of average hypervolume (38 out of 63

bjective sets) and maximum hypervolume (41 out of 63 objective

ets). Interestingly, RS provides better results than NSGA-II for a

air percentage of objective sets. This is probably because NSGA-II

ainly focuses on re-ordering the test cases in the initial popu-

ation, while RS performs a wider exploration of the search space

enerating solutions with different (random) test cases. It is note-

orthy, however, that a larger hypervolume does not necessarily

mplies a better rate of fault detection, as observed in Table 16 . 

In summary, NSGA-II outperforms RS in accelerating the de-

ection of faults in HCSs since NSGA-II provides higher average

nd maximum APFD values, it usually generates Pareto fronts

pproximations with better hypervolumes, and both algorithms

ave similar executions times. 

.7.2. Comparison with a coverage-based prioritization algorithm 

For a further validation, we compared the results of our MOEA

ith the deterministic coverage-based prioritization algorithm

or software product lines proposed by Sánchez et al. (2014) .

he algorithm takes an attributed feature model afm as input,
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Table 14 ̂ A 12 values for combinations of non-functional objectives vs. mixed combinations of functional and non–functional prioritization objectives. Cells 

revealing very large statistical differences are highlighted using dark grey (in favour of the column) or light grey (in favour of the row). Values in 

boldface reveal statistically significant differences (the p -value with Holm’s correction is < 0.05). 

Mixed Multi-Objective
Non-Functional Multi-Objective

Changes + Faults Changes + Size Faults + Size Changes + Faults + Size

Changes + Connectivity 0.098 0.549 0.087 0.116
Changes + Dissimilarity 0.100 0.517 0.093 0.110
Changes + Pairwise 0.239 0.807 0.222 0.273
Changes + VCoverage 0.117 0.543 0.105 0.126

074.0stluaF+ytivitcennoC 0.924 0.438 0.514
Connectivity + Size 0.063 0.569 0.055 0.083
Dissimilarity + Faults 0.643 0.947 0.571 0.639
Dissimilarity + Size 0.078 0.451 0.072 0.095
Faults + Pairwise 0.343 0.882 0.318 0.391

555.0egarevoCV+stluaF 0.932 0.473 0.548
Pairwise + Size 0.269 0.853 0.251 0.314
Size + VCoverage 0.083 0.535 0.073 0.094

Changes + Connectivity + Dissimilarity 0.113 0.528 0.100 0.118
Changes + Connectivity + Faults 0.454 0.917 0.408 0.480
Changes + Connectivity + Pairwise 0.290 0.865 0.269 0.350
Changes + Connectivity + Size 0.113 0.595 0.108 0.130
Changes + Connectivity + VCoverage 0.165 0.584 0.149 0.167
Changes + Dissimilarity + Faults 0.528 0.929 0.469 0.537
Changes + Dissimilarity + Pairwise 0.327 0.866 0.302 0.359
Changes + Dissimilarity + Size 0.122 0.547 0.101 0.113
Changes + Dissimilarity + VCoverage 0.166 0.680 0.136 0.173
Changes + Faults + Pairwise 0.443 0.904 0.392 0.446
Changes + Faults + VCoverage 0.505 0.929 0.458 0.523
Changes + Pairwise + Size 0.435 0.903 0.394 0.467
Changes + Pairwise + VCoverage 0.367 0.882 0.330 0.401
Changes + Size + VCoverage 0.077 0.578 0.067 0.088
Connectivity + Dissimilarity + Faults 0.598 0.941 0.535 0.589
Connectivity + Dissimilarity + Size 0.097 0.563 0.095 0.124
Connectivity + Faults + Pairwise 0.424 0.891 0.378 0.434

845.0eziS+stluaF+ytivitcennoC 0.933 0.476 0.546
Connectivity + Faults + VCoverage 0.565 0.929 0.520 0.578
Connectivity + Pairwise + Size 0.404 0.897 0.348 0.418
Connectivity + Size + VCoverage 0.111 0.521 0.106 0.134
Dissimilarity + Faults + Pairwise 0.444 0.913 0.403 0.469

765.0eziS+stluaF+ytiralimissiD 0.942 0.515 0.583
Dissimilarity + Faults + VCoverage 0.607 0.942 0.548 0.595
Dissimilarity + Pairwise + Size 0.295 0.884 0.279 0.364
Dissimilarity + Size + VCoverage 0.096 0.584 0.082 0.111
Faults + Pairwise + Size 0.419 0.914 0.373 0.452
Faults + Pairwise + VCoverage 0.388 0.901 0.348 0.419

095.0egarevoCV+eziS+stluaF 0.937 0.531 0.586
Pairwise + Size + VCoverage 0.388 0.893 0.359 0.434

Table 15 ̂ A 12 values for functional vs. non–functional prioritization objectives. Cells revealing very large statistical differences are highlighted in dark grey (in favour 

of the column). Values in boldface reveal statistically significant differences (the p -value with Holm’s correction is < 0.05). 

Functional Objectives
Non-Functional Objectives

Changes Faults Size Changes + Faults Changes + Size Faults + Size Changes + Faults + Size

Connectivity 0.675 0.083 0.550 0.060 0.509 0.057 0.078
385.0ytiralimissiD 0.037 0.442 0.036 0.403 0.035 0.037

Pairwise 0.166 0.000 0.083 0.000 0.076 0.000 0.000
736.0egarevoCV 0.061 0.509 0.051 0.463 0.045 0.056

Connectivity + Dissimilarity 0.657 0.115 0.536 0.093 0.493 0.087 0.108
Connectivity + Pairwise 0.895 0.278 0.851 0.212 0.802 0.201 0.265
Connectivity + VCoverage 0.704 0.088 0.589 0.070 0.541 0.054 0.080
Dissimilarity + Pairwise 0.912 0.314 0.887 0.242 0.838 0.225 0.290
Dissimilarity + VCoverage 0.654 0.064 0.534 0.039 0.497 0.039 0.058
Pairwise + VCoverage 0.848 0.116 0.741 0.090 0.697 0.081 0.108

Connectivity + Dissimilarity + Pairwise 0.915 0.363 0.898 0.289 0.849 0.274 0.342
Connectivity + Dissimilarity + VCoverage 0.688 0.104 0.553 0.089 0.516 0.079 0.097
Connectivity + Pairwise + VCoverage 0.891 0.273 0.831 0.234 0.792 0.221 0.261
Dissimilarity + Pairwise + VCoverage 0.918 0.342 0.896 0.286 0.848 0.258 0.322
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Table 16 

APFD values and execution times achieved by NSGA-II and Random Search (40 executions in total). 

Objectives NSGA-II Random search 

Ex.Time Avg Avg Max Ex.Time Avg Avg Max 

Connectivity 77251.6 0.923 0.935 119627.9 0.911 0.915 

Dissimilarity 75856.1 0.912 0.931 112480.8 0.885 0.894 

Pairwise 1478882.8 0.880 0.880 714078.2 0.913 0.913 

VCoverage 79107.7 0.888 0.933 102457.4 0.893 0.918 

Connectivity + Dissimilarity 83767.4 0.912 0.937 106497.4 0.898 0.914 

Connectivity + Pairwise 1421967.3 0.938 0.951 709398.8 0.933 0.952 

Connectivity + VCoverage 78199.5 0.914 0.934 120115.3 0.891 0.899 

Dissimilarity + Pairwise 1400685.8 0.941 0.952 715289.6 0.931 0.953 

Dissimilarity + VCoverage 77182.5 0.916 0.936 128498.2 0.900 0.919 

Pairwise + VCoverage 1453296.7 0.936 0.948 714764.8 0.927 0.952 

Connectivity + Dissimilarity + Pairwise 1414754.9 0.929 0.954 711827.3 0.927 0.953 

Connectivity + Dissimilarity + VCoverage 80922.4 0.906 0.929 111031.5 0.917 0.933 

Connectivity + Pairwise + VCoverage 1434254.1 0.932 0.949 720098.3 0.928 0.953 

Dissimilarity + Pairwise + VCoverage 1405714.7 0.938 0.952 715958.6 0.926 0.952 

Changes 154553.9 0.902 0.915 255249.5 0.907 0.907 

Faults 266983.7 0.955 0.955 311060.0 0.953 0.953 

Size 147161.1 0.917 0.931 267076.5 0.917 0.917 

Changes + Faults 267046.7 0.953 0.955 315937.0 0.933 0.954 

Changes + Size 150685.2 0.918 0.942 250050.4 0.909 0.942 

Faults + Size 266313.0 0.955 0.956 317911.9 0.941 0.954 

Changes + Faults + Size 267405.4 0.951 0.955 319803.3 0.935 0.954 

Changes + Connectivity 89517.2 0.916 0.939 134150.5 0.907 0.944 

Changes + Dissimilarity 89095.0 0.907 0.939 143702.3 0.905 0.940 

Changes + Pairwise 1174272.6 0.937 0.952 602875.9 0.928 0.951 

Changes + VCoverage 86759.7 0.917 0.936 133983.3 0.906 0.950 

Connectivity + Faults 24 814 8.2 0.953 0.955 221543.1 0.944 0.954 

Connectivity + Size 95670.1 0.915 0.944 134395.5 0.910 0.948 

Dissimilarity + Faults 253215.6 0.954 0.955 219950.5 0.940 0.954 

Dissimilarity + Size 85769.7 0.903 0.923 129575.3 0.913 0.946 

Faults + Pairwise 1328146.5 0.943 0.954 681334.3 0.938 0.954 

Faults + VCoverage 258827.7 0.955 0.956 211328.7 0.944 0.954 

Pairwise + Size 1190707.6 0.942 0.953 608338.8 0.932 0.953 

Size + VCoverage 82624.5 0.913 0.935 148241.0 0.908 0.950 

Changes + Connectivity + Dissimilarity 90333.7 0.912 0.939 141020.4 0.899 0.947 

Changes + Connectivity + Faults 242090.7 0.951 0.955 213817.3 0.932 0.955 

Changes + Connectivity + VCoverage 91098.6 0.915 0.943 147589.7 0.904 0.942 

Changes + Dissimilarity + Faults 258500.8 0.952 0.955 237274.7 0.932 0.954 

Changes + Dissimilarity + VCoverage 79023.9 0.912 0.948 14 934 8.8 0.887 0.946 

Changes + Faults + Pairwise 1314596.2 0.942 0.954 685275.2 0.929 0.955 

Changes + Faults + VCoverage 253188.5 0.952 0.955 227043.4 0.927 0.954 

Changes + Pairwise + Connectivity 1159383.0 0.935 0.954 609231.8 0.926 0.954 

Changes + Pairwise + Dissimilarity 1156172.8 0.935 0.953 608587.6 0.923 0.953 

Changes + Pairwise + VCoverage 1154166.3 0.936 0.954 601289.3 0.924 0.954 

Changes + Size + Connectivity 81688.1 0.911 0.939 131841.9 0.903 0.947 

Changes + Size + Dissimilarity 87032.2 0.913 0.942 131280.7 0.913 0.950 

Changes + Size + Pairwise 1185686.4 0.940 0.955 609731.4 0.925 0.955 

Changes + Size + VCoverage 93134.0 0.908 0.940 138131.6 0.906 0.952 

Connectivity + Dissimilarity + Faults 254147.6 0.954 0.955 232744.1 0.938 0.954 

Connectivity + Dissimilarity + Size 77954.7 0.910 0.944 130562.3 0.902 0.945 

Connectivity + Faults + Pairwise 1324924.1 0.942 0.954 689787.5 0.935 0.955 

Connectivity + Faults + Size 2540 0 0.3 0.954 0.955 221594.3 0.925 0.954 

Connectivity + Faults + VCoverage 245731.1 0.951 0.955 217372.5 0.941 0.954 

Connectivity + Size + Pairwise 1167713.3 0.938 0.955 604217.1 0.924 0.955 

Connectivity + Size + VCoverage 83282.2 0.914 0.944 156937.0 0.904 0.951 

Dissimilarity + Faults + Pairwise 1324060.1 0.945 0.955 677402.6 0.929 0.954 

Dissimilarity + Faults + Size 243985.7 0.952 0.955 226250.4 0.931 0.954 

Dissimilarity + Faults + VCoverage 251145.3 0.952 0.955 225094.4 0.934 0.954 

Dissimilarity + Pairwise + Size 1130349.7 0.942 0.954 607200.3 0.927 0.953 

Dissimilarity + Size + VCoverage 95906.8 0.912 0.945 137942.8 0.906 0.949 

Faults + Pairwise + VCoverage 1299913.7 0.944 0.955 682123.5 0.935 0.954 

Faults + Pairwise + Size 1315391.8 0.942 0.955 686569.3 0.939 0.954 

Faults + Size + VCoverage 246233.0 0.953 0.956 218511.5 0.924 0.955 

Pairwise + Size + VCoverage 1169411.1 0.939 0.955 603278.3 0.923 0.953 

Average 552301.4 0.930 0.946 351709.2 0.920 0.945 
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enerates a pairwise suite from the model and re-arranges its

roducts in descending order of pairwise coverage using bubble

earch. For the deterministic generation of a pairwise suite, we

sed the SPLCAT tool ( Johansen et al., 2011 ). The pseudo-code of

ur implementation is described in Algorithm 2 . Two functions
re invoked in the pseudo-code of this algorithm: i) ICPL which

epresents the ICPL algorithm for generating pairwise suites as

mplemented by the tool SPLCAT, and cov that is equivalent to the

airwiseCoverage objective function defined in Section 6 assuming

hat the suite has a single test case, specified as a parameter. 
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Table 17 

Comparison of hypervolumes obtained by NSGA-II and Random Search. 

Objective NSGA-II Random search 

Avg HV StdDev HV Max HV Avg HV StdDev HV Max HV 

Connectivity 0.062 0.031 0.144 0.026 0.007 0.060 

Dissimilarity 0.055 0.024 0.129 0.036 0.006 0.050 

Pairwise 0.151 0.003 0.157 0.318 0.004 0.324 

VCoverage 0.062 0.026 0.115 0.021 0.003 0.033 

Connectivity + Dissimilarity 0.103 0.040 0.166 0.068 0.014 0.107 

Connectivity + Pairwise 0.217 0.034 0.303 0.349 0.006 0.360 

Connectivity + VCoverage 0.108 0.047 0.206 0.049 0.010 0.071 

Dissimilarity + Pairwise 0.206 0.032 0.261 0.355 0.008 0.374 

Dissimilarity + VCoverage 0.109 0.039 0.185 0.060 0.010 0.089 

Pairwise + VCoverage 0.218 0.026 0.257 0.344 0.007 0.364 

Dissimilarity + Pairwise + VCoverage 0.269 0.049 0.356 0.379 0.009 0.396 

Connectivity + Dissimilarity + Pairwise 0.281 0.062 0.428 0.379 0.010 0.398 

Connectivity + Dissimilarity + VCoverage 0.167 0.062 0.297 0.083 0.012 0.105 

Connectivity + Pairwise + VCoverage 0.278 0.052 0.393 0.372 0.014 0.407 

Changes 0.110 0.025 0.178 0.082 0.008 0.103 

Faults 0.157 0.017 0.188 0.166 0.015 0.201 

Size 0.065 0.015 0.093 0.050 0.003 0.058 

Changes + Faults 0.260 0.026 0.308 0.245 0.015 0.273 

Changes + Size 0.169 0.044 0.299 0.133 0.009 0.160 

Faults + Size 0.207 0.025 0.251 0.213 0.017 0.248 

Changes + Faults + Size 0.305 0.040 0.404 0.290 0.019 0.330 

Changes + Connectivity 0.168 0.039 0.304 0.113 0.009 0.137 

Changes + Dissimilarity 0.165 0.038 0.291 0.115 0.008 0.131 

Changes + Pairwise 0.245 0.028 0.311 0.386 0.008 0.400 

Changes + VCoverage 0.173 0.037 0.266 0.106 0.007 0.124 

Connectivity + Faults 0.214 0.041 0.309 0.197 0.019 0.254 

Connectivity + Size 0.129 0.043 0.256 0.083 0.006 0.097 

Dissimilarity + Faults 0.199 0.031 0.295 0.201 0.016 0.244 

Dissimilarity + Size 0.111 0.028 0.179 0.087 0.009 0.106 

Faults + Pairwise 0.293 0.019 0.360 0.435 0.012 0.470 

Faults + VCoverage 0.204 0.040 0.298 0.194 0.023 0.249 

Pairwise + Size 0.213 0.022 0.256 0.360 0.004 0.373 

Size + VCoverage 0.124 0.033 0.196 0.077 0.004 0.092 

Changes + Connectivity + Dissimilarity 0.212 0.054 0.385 0.147 0.014 0.182 

Changes + Connectivity + Faults 0.317 0.044 0.416 0.273 0.019 0.315 

Changes + Connectivity + Pairwise 0.324 0.039 0.415 0.418 0.009 0.433 

Changes + Connectivity + Size 0.226 0.043 0.341 0.162 0.011 0.188 

Changes + Connectivity + VCoverage 0.221 0.053 0.346 0.134 0.009 0.158 

Changes + Dissimilarity + Faults 0.297 0.042 0.421 0.283 0.018 0.319 

Changes + Dissimilarity + Pairwise 0.307 0.048 0.425 0.419 0.009 0.445 

Changes + Dissimilarity + Size 0.211 0.041 0.303 0.164 0.009 0.181 

Changes + Dissimilarity + VCoverage 0.212 0.040 0.334 0.145 0.012 0.189 

Changes + Faults + Pairwise 0.374 0.034 0.452 0.499 0.012 0.530 

Changes + Faults + VCoverage 0.303 0.043 0.391 0.271 0.017 0.303 

Changes + Pairwise + Size 0.300 0.051 0.417 0.423 0.007 0.435 

Changes + Pairwise + VCoverage 0.323 0.039 0.410 0.412 0.008 0.430 

Changes + Size + VCoverage 0.226 0.051 0.364 0.160 0.009 0.183 

Connectivity + Dissimilarity + Faults 0.256 0.044 0.366 0.237 0.021 0.279 

Connectivity + Dissimilarity + Size 0.166 0.046 0.249 0.115 0.012 0.138 

Connectivity + Faults + Pairwise 0.340 0.054 0.4 4 4 0.462 0.014 0.489 

Connectivity + Faults + Size 0.266 0.046 0.368 0.249 0.019 0.288 

Connectivity + Faults + VCoverage 0.252 0.057 0.394 0.218 0.018 0.258 

Connectivity + Pairwise + Size 0.281 0.053 0.388 0.391 0.007 0.410 

Connectivity + Size + VCoverage 0.184 0.046 0.288 0.107 0.009 0.127 

Dissimilarity + Faults + Pairwise 0.342 0.040 0.422 0.471 0.015 0.514 

Dissimilarity + Faults + Size 0.265 0.044 0.435 0.251 0.020 0.282 

Dissimilarity + Faults + VCoverage 0.248 0.058 0.403 0.231 0.020 0.290 

Dissimilarity + Pairwise + Size 0.267 0.034 0.359 0.394 0.008 0.412 

Dissimilarity + Size + VCoverage 0.166 0.030 0.215 0.113 0.010 0.157 

Faults + Pairwise + Size 0.339 0.021 0.382 0.473 0.013 0.497 

Faults + Pairwise + VCoverage 0.345 0.029 0.392 0.456 0.009 0.479 

Faults + Size + VCoverage 0.263 0.045 0.375 0.246 0.017 0.273 

Pairwise + Size + VCoverage 0.275 0.030 0.350 0.390 0.007 0.404 
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The APFD value achieved by the coverage-based algorithm

is 0.946, which is less than the average AFPD value of the best

solution in the Pareto front found by NSGA-II for 38 out of the 63

objective sets, i.e. column “Avg Max” in Table 16 . More importantly,

NSGA-II achieved better results than the coverage-based algorithm

in all the 40 executions for 29 out of the 63 objective sets. This
eans that, for almost half of the objective sets, our algorithm was

lways better than the coverage-based algorithm. It is noteworthy,

owever, that the differences between the APFD values of NSGA-II

nd the coverage-based algorithm are small, probably due to the

ize of the generated suites (13 test cases on average). We con-

ecture that these differences would be larger when dealing with
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Algorithm 2 Coverage-based prioritization algorithm 

1: procedure PWCMax ( a f m ) 

2: suite ← ICP L (a f m ) 

3: size ← size (suite ) 

4: repeat 

5: swapped ← false 

6: for i ← 2 , size do 

7: if cov (suite [ i − 1] , a f m ) < cov (suite [ i ] , a f m ) then 

8: aux ← suite [ i ] 

9: suite [ i ] ← suite [ i − 1] 

10: suite [ i − 1] ← aux 

11: swapped ← true 

12: end if 

13: end for 

14: until ¬ swapped 

15: return suite 

16: end procedure 
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igger test suites (e.g. 3-wise), but this is something that requires

urther research. In terms of execution time, the coverage-based

lgorithm was executed in less than 2 seconds, which makes it

ppropriate when fast response times are required. 

.8. Discussion 

We now summarize the results and what they tell us about the

esearch questions. 

RQ1: Mono vs. multi–objective prioritization using func-

ional objectives . Experiment 1 revealed that multi–objective

rioritization outperforms mono-objective prioritization when us- 

ng functional objectives. The superiority was especially noticeable

n the comparison with Pairwise as a single-objective, which

onsistently achieved the worse rate of fault detection. Interest-

ngly, however, Pairwise performed very well when combined

ith other functional objectives. In the light of these results, RQ1

s answered as follows: 

Multi–objective prioritization using functional objectives 

is more effective than mono–objective prioritization with 

functional objectives in accelerating the detection of faults 

in HCSs. 

RQ2: Mono vs. multi–objective prioritization using non–

unctional objectives . The results of experiment 2 showed

ignificant differences in favour of multi–objective prioritization

ver mono–objective prioritization using non–functional objec-

ives. It also revealed a clear superiority of the objective function

aults , single or in combination with other objectives, over the

est of the non-functional objectives. We conjecture that this result

ould be caused by the nature of the case study. In particular, we

sed the bugs detected in Drupal v7.22 to accelerate the detection

f faults in Drupal v7.23. Being two consecutive versions of the

ramework, we found that some of the faults in Drupal v7.22

emained in Drupal v7.23, which means that the prioritization

ould be overfitted. While this is a realistic scenario, we think the

esults could not be generalizable to non–consecutive versions of

he framework and thus the results must be taken with caution.

ased on the global results, however, RQ2 is answered as follows: 
Multi–objective prioritization using non–functional objec- 

tives is, in general, more effective than mono–objective 

prioritization with non–functional objectives in accelerat- 

ing the detection of faults in HCSs. 

RQ3: Combination of functional and non–functional objec-

ives . Experiment 3 revealed that the multi–objective prioritiza-

ion using functional and non–functional objectives outperform

rioritization driven by a single objective, either functional or non-

unctional. Similarly, mixed combinations of objectives achieved

etter results than the combination of functional objectives, but

lightly worse than the combination of non-functional objectives.

t was observed that the objective Faults has a key influence in

he results of prioritization, probably explained, as detailed above,

y the use of two consecutive versions of the framework. It is

emarkable, however, that the best overall results were achieved

y the combination of the functional objective Dissimilarity
nd the non-functional objective Faults . In the light of these

esults, RQ3 is answered as follows: 

Multi–objecti ve prioritization dri ven by functional and non–

functional objectives perform better than mono–objective 

prioritization, and better than multi–objective prioritization 

using functional objectives, but slightly worse than multi–

objective prioritization using non–functional objectives in 

accelerating the detection of faults in HCSs. 

RQ4: Functional vs non–functional objectives . The results of

xperiment 4 show a clear dominance of non–functional objectives

ver functional objectives, especially noticeable when these are

ombined in a multi-objective perspective. This is consistent with

ur previous results on mono–objective comparison of functional

nd non–functional objectives ( Sánchez et al., 2015b ). Based on

hese results, RQ4 is answered as follows: 

Non–functional prioritization objectives are more effective 

in accelerating the detection of faults in HCSs than func- 

tional objectives, especially when they are combined in a 

multi-objecti ve per specti ve. 

RQ5: What is the performance of the proposed MOEA com-

ared to related algorithms? . The results of experiment 5 reveal

hat NSGA-II outperforms Random Search and coverage-based

rioritization in terms of hypervolume and rate of detected faults.

lthough the coverage-based algorithm provides solutions with a

ood detection speed in a short execution time, our adaptation of

SGA-II outperforms it with 60% of the objective sets under com-

arison. More importantly, our algorithm achieved better results

han the coverage-based approach in all the executions for 29 out

f 63 objective groups. This means that, for almost half of the
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objective sets, NSGA-II was always better than the coverage-based

algorithm. Based on these results, RQ5 is answered as follows: 

NSGA-II outperforms random search and coverage-based 

prioritization in accelerating the detection of faults in 

HCSs, although coverage-based prioritization is signifi- 

cantly faster. 

8. Threats to validity 

The factors that could have influenced our case study are

summarized in the following internal and external validity threats.

Internal validity . This refers to whether there is sufficient ev-

idence to support the conclusions and the sources of bias that

could compromise those conclusions. Inadequate parameter setting

is a common internal validity threat. In this paper, we used stan-

dard parameter values for the NSGA-II algorithm ( Deb et al., 2002 ).

Furthermore, to consider the effect of stochasticity, the algorithm

was executed multiple times with each combination of objective

functions and their results analysed using statistical tests. 

For the evaluation of our approach we seeded our algorithm

with pairwise test suites from the Drupal feature model in Fig. 3 .

Each pairwise was composed of 13 test cases on average. The

output test suites generated by the prioritization algorithms under

study had a similar size. Due to the small number of test cases

in the suites, we found that the absolute differences among the

APFD values achieved by different algorithms and objectives where

small, which may suggest that their performance is similar. We

remark, however, that the observed differences are statistically

significant showing the superiority of our approach. Results also

suggest that the observed differences would be noticeably larger

when prioritizing larger test suites, but that is something that

requires further research. Finally, we may remark that the main

goal of our work is to compare the effectiveness of different

prioritization objectives for HCSs, rather than comparing the

performance of different prioritization algorithms. 

External validity . This can be mainly divided into limitations

of the approach and generalizability of the conclusions. Regarding

the limitations, the Drupal feature model and their attributes were

manually mined from different sources and therefore they could

slightly differ from their real shape ( Sánchez et al., 2015b ). Other

risk for the validity of our work is that a number of the faults in

Drupal v7.22 remained in Drupal v7.23, which may introduce a

bias in the fault–driven prioritization. Note, however, that this is a

realistic scenario since it is common in open-source projects that

unfixed faults affect several versions of the system. 

The statistical and prioritization results reported are based on

a single case study and thus cannot be generalized to other HCSs.

Nevertheless, our results show the efficacy of using combinations

of functional and non-functional goals in a multi-objective prob-

lem as good drivers for test case prioritization in open–source

HCSs as the Drupal framework. 

9. Related work 

In this section we summarize the pieces of work that most

closely relate to us. We divide them into HCSs testing and general

software testing. 

HCSs testing. Within the context of HCSs, there has been a

stark and recent interest in the area of Software Product Lines (SPLs)

testing as evidenced by several systematic mapping studies (e.g.

da Mota Silveira Neto et al., 2011; do Carmo Machado et al., 2014;
ngström and Runeson, 2011 ). These studies focus on categorizing

PL approaches along criteria within the realm of SPLs such as

andling of variability and variant binding times, as well as other

spects like test organization and process. Among their findings,

ll identified Combinatorial Interaction Testing (CIT) , as the leading

pproach of SPL testing. Recent work by Yilmaz et al. divides CIT

pproaches in two big phases ( Yilmaz et al., 2014 ): i) what phase

hose purpose is to select a group of products for testing, and ii)

ow phase whose purpose is to perform the test on the selected

roducts. When CIT is applied to SPLs the goal is to obtain a

ample of products, i.e. feature combinations, as representative

xemplars on which to perform the testing tasks. Recently, we

erformed a systematic mapping study to delve into more detail

n the subject ( Lopez-Herrejon et al., 2015 ). This mapping study

dentified over forty different approaches that rely on diverse tech-

iques, such as genetic and greedy algorithms, that were evaluated

lso with multiple problem domains of different characteristics.

mong other findings, this study revealed that the large majority

f approaches focuses only on computing the samples of products

ased purely on variability models (e.g. feature models), that is,

he main focus is the what phase of CIT. 

In addition, most of the approaches found focus on pairwise

esting and only few have higher coverage strengths (i.e. t > 3).

 salient example is the work of Henard et al. who compute

overing arrays of up to 6 features (i.e. t = 6) for some of the

argest variability models available ( Henard et al., 2014 ). They

mploy an evolutionary algorithm with an objective function

ased on Jaccard’s dissimilarity metric, and compute samples of

xed size within certain fixed constraints regarding computation

ime and number of iterations. For their larger case studies and for

he smaller case studies from 3-wise upwards, they analyze the

ffectiveness of their approach based on the estimated number of

eature interactions (i.e. t-sets) as the actual number is intractable

o compute. To the best of our knowledge, this and other ap-

roaches that consider higher coverage strengths for SPLs do not

rovide empirical evidence that higher coverage strengths are in

act more effective for fault detection to actually pay off for their

ypically more expensive computation. This is so, because for their

nalysis they do not consider actual faults found in actual systems

ike our work does with Drupal. 

Our study also revealed very few instances of prioritization

n SPL testing. Salient among them is our previous work that

tudied different approaches to prioritize test suites obtained with

 single-objective greedy algorithm and their impact for fault de-

ection ( Sánchez et al., 2014 ). Another approach was proposed by

ohansen et al. who attach arbitrary weights to products to reflect

or instance market relevance and compute the covering arrays

sing a greedy approach ( Johansen et al., 2012 ). This approach was

ormalized by Lopez-Herrejon et al. who also propose a parallel

enetic algorithm that achieved better performance in a larger

umber of case studies ( Lopez-Herrejon et al., 2014 ). In sharp

ontrast with these approaches, our current work employs a multi-

bjective algorithm to analyze different combinations of metrics

nd their impact for detecting faults in a real-world case study. 

Devroey et al. proposed a model-based testing approach to pri-

ritize SPL testing ( Devroey et al., 2014a ). Their approach relies on

 feature model, a feature transition system (a transition system

nhanced with feature information to indicate what products can

xecute a transition), and a usage model with the probabilities

f executing relevant transitions. This approach computes the

robabilities of execution of products which could be used to

rioritize their testing. It was empirically evaluated on logged

nformation of a web-system. In contrast with our work, their

rioritization is based on statistical probabilities per product (not

n functional and non-functional data), and does not consider

ultiple optimization objectives. 
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Recent work by Wang et al. use a preference indicator to

ssign different weights to objective functions depending on their

elevance for the users ( Wang et al., 2015b ). They modify the

SGA-II algorithm by substituting its crowd distance indicator

ith their preference indicator. In contrast with our work, their

ocus is on finding more effective weight assignments that reflect

ser preference rather than focusing on different combinations of

bjective functions to speed up fault localization. Also recent work

y Epitropakis et al. study multi-objective test case prioritization

ut focus on standard software systems (i.e. not on HCSs), and use

 different set of objective functions ( Epitropakis et al., 2015 ). 

Similar to test prioritization, only a few studies have been

onducted on employing multi-objective optimization of SPL test-

ng. The work by Wang et al. describe an approach to minimize

est suites using three objectives ( Wang et al., 2013 ), namely, test

inimization percentage, pairwise coverage, and fault detection

apability that works by assigning weights to these objectives

a process called scalarization ( Zitzler, 2012 ). Their work was

xtended to generate weights from a uniform distribution while

till satisfying the user-defined constraints ( Wang et al., 2014a ).

ore recently, they have extended this work to consider several

ulti-objective algorithms that also includes resource awareness

 Wang et al., 2016 ). 

Work by Henard et al. presents an ad-hoc multi-objective

lgorithm whose fitness functions are maximizing coverage, min-

mizing test suite size, and minimizing cost ( Henard et al., 2013 ).

owever, they also use scalarization. This is important because

here is an extensive body of work on the downsides of scalar-

zation in multi-objective optimization ( Marler and Arora, 2004 ).

mong the shortcomings are the fact that weights may show a

reference of one objective over the other and, most importantly,

he impossibility of reaching some parts of the Pareto front when

ealing with convex fronts. 

In contrast, work by Lopez-Herrejon et al. propose an approach

or computing the exact Pareto front for pairwise coverage of two

bjective functions, maximization of coverage and minimization

f test suite size ( Lopez-Herrejon et al., 2013 ). Subsequent work

lso by Lopez-Herrejon et al. studied four classical multi-objective

lgorithms and the impact of seeding for computing pairwise cov-

ring arrays ( Lopez-Herrejon et al., 2014 ). These approaches have

n common that they do not consider prioritization and are not

valuated with actual real-world case studies. Closets to our work,

ang et al. compare SPL testing techniques that include different

eight-assignment approaches for scalarization into single ob-

ective problems, multi-objective evolutionary algorithms, swarm

article algorithms, and hybrid algorithms ( Wang et al., 2015a ).

n contrast with our work, they use a different set of objective

unctions, and their industrial case study considers only a handful

f products for which they aim to minimize the cost of selecting

lready existing test cases. Multi-objective techniques have also

een used at other stages of the SPL development life cycle, for

nstance for product configuration. For a summary please refer to a

ecent mapping study on the application of Search-Based Software

ngineering techniques to SPLs ( Lopez-Herrejon et al., 2015 ). 

Drupal is, to the best of our knowledge, the first documented

ase study that provides detailed information regarding faults

nd their relation to features and their interactions based on

evelopers’ logs. Recent work by Abal et al. collected a database

ith similar information for several versions of the Linux kernel

 Abal et al., 2014 ). We plan to look at this case study to further

orroborate or refute our findings. 

General software testing. In the general context of software

esting there is extensive literature that relates to our work in the

ense of using multi-objective algorithms or prioritization schemes

ut not particularly applied to HCSs. For example, Harman et al.

rovide an overview of the area of Search-Based Software Engi-
eering which shows the prevalence of testing as the development

ctivity where search-based techniques are commonly used

 Harman et al., 2012 ). Similarly, Yoo and Harman present a general

verview of regression testing that includes prioritization ( Yoo

nd Harman, 2012b ). Among their findings is the work by Li et al.

hat applied and compared several metaheuristics for test case

rioritization ( Li et al., 2007 ). They show that even though genetic

lgorithms work well, greedy approaches are also effective. 

Regarding multi-objective algorithms, Sayyad and Ammar 

erformed a survey on pareto-optimal SBSE which identified the

rowing interest and use of classical multi-objective algorithms

 Sayyad and Ammar, 2013 ). The articles that they identified in the

esting area do not, however, deal with HCSs. Yoo and Harman

ropose treating test case selection as a multi-objective problem

ith a Pareto efficient approach ( Yoo and Harman, 2007 ). Islam

t al. propose an approach that uses traceability links among

ource code and system requirements, recovered via the Latent

emantic Indexing (LSI) technique, as one of the multi-objective

unctions to optimize ( Islam et al., 2012 ). More recently, Marchetto

t al. (2015) extend on this work to provide a more thorough

nalysis and evaluation of using LSI in combination with more

etrics for test case prioritization. 

0. Conclusions 

This article presented a real–world case study on multi–

bjective test case prioritization in Drupal, a highly configurable

eb framework. In particular, we adapted the NSGA-II evolution-

ry algorithm to solve the multi-objective prioritization problem

n HCSs. Our algorithm uses seven novel objective functions based

n functional and non-functional properties of the HCS under test.

e performed several experiments comparing the effectiveness

f 63 different combinations of up to three of these objectives

n accelerating the detection of faults in Drupal. Results revealed

hat prioritization driven by non-functional objectives, such as

he number of faults found in a previous version of the system,

ccelerate the detection of bugs more effectively than functional

rioritization objectives. Furthermore, it was observed that the

rioritization objective based on pairwise coverage, when com-

ined with other objectives, is usually effective in detecting bugs

uickly. Finally, results showed that multi-objective prioritization

erforms better than mono-objective prioritization in general. To

he best of our knowledge, this is the first comparison of test case

rioritization objectives for HCSs using industry–strength data. 

Several challenges remain for future work. First, the devel-

pment of similar case studies in other HCSs would be a nice

omplement to study the generalizability of our conclusions. Also,

he result of combining more than three objectives is a topic that

emains unexplored and for which other algorithms (so-called

any–objectives algorithms) are probably more suited. Finally,

e may remark that part of the results of this work have been

ntegrated into SmarTest , a Drupal test prioritization module

eveloped by some of the authors and recently presented at the

nternational Drupal Conference ( Sánchez et al., 2015a ) with very

ositive feedback from the community. 

aterial 

For the sake of replicability, the source code of our algo-

ithm, the Drupal attributed feature model, experimental results

nd statistical analysis scripts in R are publicly available at

ttp://exemplar.us.es/demo/SanchezJSS2016 (100Mb). 

http://exemplar.us.es/demo/SanchezJSS2016
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